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WORDS &
TRANSDUCERS

How can there be any sin in sincere?
Where is the good in goodbye?
Meredith Willson,The Music Man

Ch. 2 introduced the regular expression, showing for exarhplv a single search
string could help us find bottvoodchuckand woodchucks Hunting for singular or
plural woodchucks was easy; the plural just tacks an to the end. But suppose we
were looking for another fascinating woodland creaturess lsay afox, and afish
that surlypeccaryand perhaps a Canadiauild goose Hunting for the plurals of these
animals takes more than just tacking onsanThe plural offox is foxes of peccary
peccaries and ofgoose geese To confuse matters further, fish don’t usually change
their form when they are plural

It takes two kinds of knowledge to correctly search for slagaiand plurals of
these formsOrthographic rules tell us that English words ending iy are pluralized
by changing they to -i- and adding ares Morphological rules tell us thatfishhas a
null plural, and that the plural afooses formed by changing the vowel.

The problem of recognizing that a word (likexe3 breaks down into component
morphemesfpx and-eg and building a structured representation of this fact lkeda

MORPHOLOGIG.  morphological parsing.

PARSING Parsingmeans taking an input and producing some sort of linguisticcture for it.
We will use the term parsing very broadly throughout thiskhaecluding many kinds
of structures that might be produced; morphological, sstitasemantic, discourse; in
the form of a string, or a tree, or a network. Morphologicakjreg or stemming applies
to many affixes other than plurals; for example we might neddke any English verb
form ending in-ing (going, talking, congratulating and parse it into its verbal stem

surrace  plus the-ing morpheme. So given traurfaceor input form going, we might want to
produce the parsed forWMERB-go + GERUND-ing.

Morphological parsing is important throughout speech andliage processing. It
plays a crucial role in Web search for morphologically coexganguages like Rus-
sian or German; in Russian the wokibscowhas different endings in the phrases
Moscow of Moscow from Moscow and so on. We want to be able to automatically

1 (see e.g., Seuss (1960))
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search for the inflected forms of the word even if the user typgd in the base form.
Morphological parsing also plays a crucial role in partspkech tagging for these mor-
phologically complex languages, as we will see in Ch. 5. iiiportant for producing
the large dictionaries that are necessary for robust gpeléking. We will need it in
machine translation to realize for example that the Frenoideva andaller should
both translate to forms of the English veagb.

To solve the morphological parsing problem, why couldn't jwst store all the
plural forms of English nouns anéhg forms of English verbs in a dictionary and do
parsing by lookup? Sometimes we can do this, and for exanoplEriglish speech
recognition this is exactly what we do. But for many NLP apations this isn’t pos-
sible becauseng is aproductive suffix; by this we mean that it applies to every verb.
Similarly -sapplies to almost every noun. Productive suffixes even applgw words;
thus the new wordiax can automatically be used in thimg form: faxing Since new
words (particularly acronyms and proper nouns) are creawedy day, the class of
nouns in English increases constantly, and we need to be@bldd the plural mor-
pheme-s to each of these. Additionally, the plural form of these newams depends
on the spelling/pronunciation of the singular form; for eyde if the noun ends irz
then the plural form isesrather thans. We'll need to encode these rules somewhere.

Finally, we certainly cannot list all the morphological iaarts of every word in
morphologically complex languages like Turkish, which hasds like:

(3.1) uygarlastiramadiklarimizdanmissinizcasina
uygar +las +tir  +ama +dik +lar +1miz +dan +mis +siniz+casina
civilized +BEC +CAUS +NABL +PART +PL +P1PL +ABL +PAST+2PL +AslIf

“(behaving) as if you are among those whom we could not egfli

The various pieces of this word (tleorphemeg have these meanings:

+BEC ‘“become”

+CAUS the causative verb marker (‘cause to X)

+NABL ‘“not able”

+PART past participle form

+P1PL 1st person pl possessive agreement

+2rPL  2nd person pl

+ABL ablative (from/among) case marker

+Aslf derivationally forms an adverb from a finite verb

Not all Turkish words look like this; the average Turkish wdwas about three mor-
phemes. But such long words do exist; indeed Kemal Oflazes,aglme up with this
example, notes (p.c.) that verbs in Turkish have 40,000ilplestorms not counting
derivational suffixes. Adding derivational suffixes, suchcausatives, allows a the-
oretically infinite number of words, since causativizat@zan be repeated in a single
word (You cause X to cause Y to ...d9.Whus we cannot store all possible Turkish
words in advance, and must do morphological parsing dyreic

In the next section we survey morphological knowledge faglish and some other
languages. We then introduce the key algorithm for morpdiold parsing, thdinite-
state transducer. Finite-state transducers are a crucial technology througspeech
and language processing, so we will return to them agairtén toapters.
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STEMMING

LEMMATIZATION

TOKENIZATION

After describing morphological parsing, we will introdus@me related algorithms
in this chapter. In some applications we don't need to passerd, but we do need to
map from the word to its root or stem. For example in informatietrieval and web
search (IR), we might want to map frofmxesto fox;, but might not need to also know
thatfoxesis plural. Just stripping off such word endings is cakdeimmingin IR. We
will describe a simple stemming algorithm called ®Parter stemmer.

For other speech and language processing tasks, we needwalkat two words
have a similar root, despite their surface differencesekample the wordsang sung
andsingsare all forms of the verbing The wordsingis sometimes called the common
lemmaof these words, and mapping from all of thessitgis calledlemmatization.?

Next, we will introduce another task related to morpholagjzarsing. Tokeniza-
tion or word segmentationis the task of separating out (tokenizing) words from run-
ning text. In English, words are often separated from eabkrdby blanks (whites-
pace), but whitespace is not always sufficient; we’ll needdtice thatNew Yorkand
rock 'n’ roll are individual words despite the fact that they contain epaleut for many
applications we’'ll need to separdtm into the two wordd andam

Finally, for many applications we need to know how similaptwords are ortho-
graphically. Morphological parsing is one method for comnpy this similarity, but
another is to just compare the strings of letters to see hmiegithey are. A common
way of doing this is with theminimum edit distance algorithm, which is important
throughout NLP. We'll introduce this algorithm and also whioow it can be used in
spell-checking.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

MORPHEMES

STEMS
AFFIXES

Morphology is the study of the way words are built up from deraineaning-bearing
units,morphemes A morpheme is often defined as the minimal meaning-bearniitg u
in a language. So for example the wdox consists of a single morpheme (the mor-
phemefox) while the wordcatsconsists of two: the morphenvatand the morpheme
-S.

As this example suggests, it is often useful to distinguish broad classes of
morphemesstemsandaffixes The exact details of the distinction vary from language
to language, but intuitively, the stem is the “main” morpleeaf the word, supplying
the main meaning, while the affixes add “additional” measiafjvarious kinds.

Affixes are further divided int@refixes suffixes infixes, andcircumfixes. Pre-
fixes precede the stem, suffixes follow the stem, circumfixebath, and infixes are
inserted inside the stem. For example, the weatsis composed of a stematand
the suffix-s. The wordunbuckleis composed of a stefmuckleand the prefijun-. En-
glish doesn’t have any good examples of circumfixes, but nwhgr languages do.
In German, for example, the past participle of some verbsriméd by addinge-to
the beginning of the stem antlto the end; so the past participle of the vedyen(to
say) isgesagf(said). Infixes, in which a morpheme is inserted in the miadla word,

2 Lemmatization is actually more complex, since it sometiineslves deciding on which sense of a word
is present. We return to this issue in Ch. 20.
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DERIVATION
COMPOUNDING
CLITICIZATION

CLITIC

PLURAL

SINGULAR

occur very commonly for example in the Philipine languaggalag. For example the
affix um, which marks the agent of an action, is infixed to the Tagaleg&ingi “bor-
row” to producehumingi There is one infix that occurs in some dialects of English in
which the taboo morphemes “f**king” or “bl**dy” or otherskie them are inserted in
the middle of other words (“Man-f**king-hattan”, “abso#stly-lutely” %) (McCawley,
1978).

A word can have more than one affix. For example, the wenditeshas the prefix
re-, the stemwrite, and the suffixs. The wordunbelievablyhas a stembgelieve plus
three affixes(n-, -able, and-ly). While English doesn’t tend to stack more than four
or five affixes, languages like Turkish can have words witreronten affixes, as we
saw above. Languages that tend to string affixes togetheiflikkish does are called
agglutinative languages.

There are many ways to combine morphemes to create wordsoFthese meth-
ods are common and play important roles in speech and lapquagessinginflec-
tion, derivation, compounding, andcliticization.

Inflection is the combination of a word stem with a grammatical morpharsa-
ally resulting in a word of the same class as the original serd usually filling some
syntactic function like agreement. For example, Englishtha inflectional morpheme
-sfor marking theplural on nouns, and the inflectional morpheredfor marking the
past tense on verbBerivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word ofldferentclass, often with a meaning hard
to predict exactly. For example the vetbmputerizecan take the derivational suffix
-ationto produce the noucomputerizationCompoundingis the combination of mul-
tiple word stems together. For example the ndoghousés the concatenation of the
morphemealogwith the morphemdéouse Finally, cliticization is the combination of
a word stem with &litic. A clitic is a morpheme that acts syntactically like a word,
but is reduced in form and attached (phonologically and sones orthographically)
to another word. For example the English morphéwveén the wordl've is a clitic, as
is the French definite articlé in the wordl'opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; onlynsg, verbs, and sometimes
adjectives can be inflected, and the number of possible titftead affixes is quite
small.

English nouns have only two kinds of inflection: an affix thatrksplural and an
affix that markgpossessiveFor example, many (but not all) English nouns can either
appear in the bare stem singular form, or take a plural suffix. Here are examples of
the regular plural suffixs (also spelledes, and irregular plurals:

| | Regular Noun§ Irregular Nouns

Singular| cat |thrush mouse ox
Plural |cats|thrushes | mice |oxen

3 Alan Jay Lerner, the lyricist of My Fair Lady, bowdlerizecethatter toabso-bloomin’lutelyin the lyric to
“Wouldn't It Be Loverly?” (Lerner, 1978, p. 60).
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While the regular plural is spelled after most nouns, it is spelledsafter words
ending in-s (ibis/ibisey, -z (waltz/waltze} -sh (thrush/thrushes -ch (finch/finchekl
and sometimesx (box/boxels Nouns ending iny preceded by a consonant change the
-y to -i (butterfly/butterflies

The possessive suffix is realized by apostrophes for regular singular nouns
(Ilama’s) and plural nouns not ending ks (children’s) and often by a lone apostro-
phe after regular plural noungmas’) and some names ending-#or -z (Euripides’
comediek

English verbal inflection is more complicated than nomimdleiction. First, En-
glish has three kinds of verbmjain verbs, (eat, sleep, impeag¢hmodal verbs(can,
will, should), andprimary verbs (be, have, dp(using the terms of Quirk et al., 1985).
In this chapter we will mostly be concerned with the main arichpry verbs, because

REGULAR it is these that have inflectional endings. Of these verbmya lelass aresgular, that is
to say all verbs of this class have the same endings markésgime functions. These
regular verbs (e.gwvalk, orinspec) have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs

stem walk merge |try map
-sform walks |merges|tries | maps
-ing participle walking| merging| trying | mapping
Past form oredparticiple || walked | merged|tried |mapped

These verbs are called regular because just by knowing ¢ne wie can predict
the other forms by adding one of three predictable endingsaaking some regular
spelling changes (and as we will see in Ch. 7, regular praation changes). These
regular verbs and forms are significant in the morphologyrajlish first because they
cover a majority of the verbs, and second because the regaks isproductive. As
discussed earlier, a productive class is one that autoatigtincludes any new words
that enter the language. For example the recently-creatddax (My mom faxedne
the note from cousin Evertiakes the regular endingsd, -ing, -es (Note that thes
form is spelledaxesrather tharfaxs we will discuss spelling rules below).

IRREGULAR VERBS Theirregular verbs are those that have some more or less idiosyncratic forms of
inflection. Irregular verbs in English often have five diffat forms, but can have as
many as eight (e.g., the veb®) or as few as three (e.gutor hit). While constituting
a much smaller class of verbs (Quirk et al. (1985) estimageetiare only about 250
irregular verbs, not counting auxiliaries), this clasdunes most of the very frequent
verbs of the languageThe table below shows some sample irregular forms. Note that

PRETERITE  an irregular verb can inflect in the past form (also calledateterite) by changing its
vowel (eat/atg, or its vowel and some consonantaich/caught or with no change at
all (cut/cu).

4 In general, the more frequent a word form, the more likelg tbihave idiosyncratic properties; this is due
to a fact about language change; very frequent words tentetepre their form even if other words around
them are changing so as to become more regular.
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Morphological Form Classedrregularly Inflected Verbs
stem eat |catch |cut
-sform eats |catches|cuts
-ing participle eating| catching cutting
Past form ate |caught |cut
-ed/-enpatrticiple eaten|caught |cut

The way these forms are used in a sentence will be discussbd gyntax and se-
mantics chapters but is worth a brief mention here. Bferm is used in the “habitual
present” form to distinguish the third-person singulariegqShe jogs every Tuesday
from the other choices of person and numbgrou/we/they jog every Tuesdaylhe
stem form is used in the infinitive form, and also after certher verbsli(d rather
walk homel want to walk homg The-ing participle is used in therogressivecon-
struction to mark present or ongoing activityi§ raining), or when the verb is treated
as a noun; this particular kind of nominal use of a verb isech#igerund use:Fishing
is fine if you live near wateiThe-ed/-enparticiple is used in thperfect construction
(He’s eaten lunch alreadyor the passive constructiolfe verdict was overturned
yesterday.

In addition to noting which suffixes can be attached to whigms, we need to
capture the fact that a number of regular spelling changesrant these morpheme
boundaries. For example, a single consonant letter is ddut®fore adding theng
and-edsuffixes peg/begging/beggedilf the final letter is “c”, the doubling is spelled
“ck” (picnic/picnicking/picnicked If the base ends in a silerg, it is deleted before
adding-ing and-ed(merge/merging/mergédlust as for nouns, theending is spelled
-esafter verb stems ending s (toss/tosses, -z, (waltz/waltzek-sh (wash/washés
-ch, (catch/catchésand sometimesx (tax/taxe$. Also like nouns, verbs ending iy
preceded by a consonant change-tht® -i (try/tries).

The English verbal system is much simpler than for examm@étiropean Spanish
system, which has as many as fifty distinct verb forms for eaghlar verb. Fig. 3.1
shows just a few of the examples for the vauar, ‘to love’. Other languages can
have even more forms than this Spanish example.

Present | Imperfect| Future Preterit¢  Presen{ Conditional Imperfecf Future

Indicativel Indicative T Subjnct 1 Subjnct. | Subjnct.
1SG@ amo amaba amarée ameé ame amaria amara amare
2SG amas amabas amaras amaste| ames amarias amaras amares
3SG ama amaba amara amo ame amaria amara amareme|
1PL| amamos amabamqs amaremds amamo$ amemos amariamos améramqs amaremqs
2PL| amais amabais | amaréis | amasteis ameéis amariais amarais | amareis
3PL| aman amaban amaran amaron| amen amarian amaran amaren

Figure 3.1 To love in Spanish. Some of the inflected forms of the \eararin Euro-
pean SpanishLSGstands for “first person singular”, 3PL for “third persongalli, and so
on.
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NOMINALIZATION

PROCLITICS
ENCLITICS

3.1.2 Derivational Morphology

While English inflection is relatively simple compared tdet languages, derivation
in English is quite complex. Recall that derivation is thentination of a word stem
with a grammatical morpheme, usually resulting in a word difeerentclass, often

with a meaning hard to predict exactly.

A very common kind of derivation in English is the formatiohreew nouns, of-
ten from verbs or adjectives. This process is callethinalization. For example,
the suffix-ation produces nouns from verbs ending often in the suffig (computer-
ize — computerization Here are examples of some particularly productive Ehglis
nominalizing suffixes.

| Suffix || Base Verb/AdjectiveDerived Noun |

-ation|| computerize (V) | computerization
-ee ||appoint (V) appointee

-er kill (V) killer

-ness || fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Herexamples of a few
suffixes deriving adjectives from nouns or verbs.

| Suffix|| Base Noun/VerhDerived Adjective

-al computation (N) computational
-able ||embrace (V) |embraceable
-less || clue (N) clueless

Derivation in English is more complex than inflection for anther of reasons.
Oneis that it is generally less productive; even a nomimaiguffix like -ation, which
can be added to almost any verb endingirg, cannot be added to absolutely ev-
ery verb. Thus we can't sayeatationor *spellation(we use an asterisk (*) to mark
“non-examples” of English). Another is that there are salsthd complex meaning
differences among nominalizing suffixes. For exanmgiteerityhas a subtle difference
in meaning fronsincereness

3.1.3 Cliticization

Recall that a clitic is a unit whose status lies in betweenhdhan affix and a word. The
phonological behavior of clitics is like affixes; they teldde short and unaccented (we
will talk more about phonology in Ch. 8). Their syntactic betor is more like words,
often acting as pronouns, articles, conjunctions, or vetiitics preceding a word are
calledproclitics, while those following arenclitics.

English clitics include these auxiliary verbal forms:

| Full Form] Clitic | Full Forml Clitic |

am 'm have ‘ve
are re has 'S
is 'S had d
will ‘Il would d
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CONCATENATIVE

AGREE

GENDER

Note that the clitics in English are ambiguous; Tlsh&'scan mearshe isor she
has Except for a few such ambiguities, however, correctly segting off clitics in
English is simplified by the presence of the apostropheicSlitan be harder to parse
in other languages. In Arabic and Hebrew, for example, tHimite article ¢the Al in
Arabic, hain Hebrew) is cliticized on to the front of nouns. It must bgsented off
in order to do part-of-speech tagging, parsing, or othéssta®ther Arabic proclitics
include prepositions likd ‘by/with’, and conjunctions likew ‘and’. Arabic also has
encliticsmarking certain pronouns. For example the wardl by their virtueshas
clitics meaningand by, andtheir, a stemvirtue, and a plural affix. Note that since
Arabic is read right to left, these would actually appeareoed from right to left in an
Arabic word.

proclitic | proclitic | stem | affix | enclitic
Arabic||w b Hsn |At [hm
Gloss ||and by virtue|s their

3.1.4 Non-concatenative Morphology

The kind of morphology we have discussed so far, in which advimcomposed of a
string of morphemes concatenated together is often cedledatenative morphology
A number of languages have extengiam-concatenative morphologyin which mor-
phemes are combined in more complex ways. The Tagalog iitixakample above is
one example of non-concatenative morphology, since twghemestiingi andum)
are intermingled.

Another kind of non-concatenative morphology is caltethplatic morphology
or root-and-pattern morphology. This is very common in Arabic, Hebrew, and other
Semitic languages. In Hebrew, for example, a verb (as weitlasr parts-of-speech)
is constructed using two components: a root, consistingllysof three consonants
(CCC) and carrying the basic meaning, and a template, whigts ghe ordering of
consonants and vowels and specifies more semantic infammakbiout the resulting
verb, such as the semantic voice (e.g., active, passivale)idFor example the He-
brew tri-consonantal rodind, meaning ‘learn’ or ‘study’, can be combined with the
active voice CaCaC template to produce the wardad ‘he studied’, or the inten-
sive CiCeC template to produce the wdided, ‘he taught’, or the intensive passive
template CuCacC to produce the wdudhad ‘he was taught’. Arabic and Hebrew com-
bine this templatic morphology with concatenative morpiggl (like the cliticization
example shown in the previous section).

3.1.5 Agreement

We introduced the plural morpheme above, and noted thaslplimarked on both
nouns and verbs in English. We say that the subject noun @adn verb in English
have toagreein number, meaning that the two must either be both singuldioth
plural. There are other kinds of agreement processes. Bonge nouns, adjectives,
and sometimes verbs in many languages are markegefotder. A gender is a kind
of equivalence class that is used by the language to caregibre nouns; each noun
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NOUN CLASSES

falls into one class. Many languages (for example Romanugulages like French,
Spanish, or Italian) have 2 genders, which are referred toasuline and feminine.
Other languages (like most Germanic and Slavic languages three (masculine,
feminine, neuter). Some languages, for example the Bangukges of Africa, have
as many as 20 genders. When the number of classes is very \aggten refer to

them asoun classesnstead of genders.

Gender is sometimes marked explicitly on a noun; for exar8plkenish masculine

words often end iro and feminine words ina. But in many cases the gender is not

marked in the letters or phones of the noun itself. Instddd,a property of the word
that must be stored in a lexicon. We will see an example ofithisg. 3.2.

3.2 HNITE-STATE MORPHOLOGICALPARSING

FEATURES

Let's now proceed to the problem of parsing morphology. Caalgvill be to take
input forms like those in the first and third columns of Fig2,3roduce output forms
like those in the second and fourth column.

English I Spanish
Input Morphologically Input Morphologically Gloss
Parsed Output Parsed Output
cats cat +N +PL pavos| pavo +N +Masc +PlI ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +PlI bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +PI canto| cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto| canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came
merging| merge +V +PresPaft vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart| lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past
Figure 3.2  Output of a morphological parse for some English and Spamists. Span-
ish output modified from the Xerox XRCE finite-state langusms.

The second column contains the stem of each word as well astegsnorpho-
logical features These features specify additional information about teens For
example the featureN means that the word is a nounSg means it is singular Pl

that it is plural. Morphological features will be referramldgain in Ch. 5 and in more
detail in Ch. 16; for now, considetrSg to be a primitive unit that means “singular”.

Spanish has some features that don’t occur in English; famgte the nounigar and

pavoare marked-Masc (masculine). Because Spanish nouns agree in gender with ad-

jectives, knowing the gender of a noun will be important fyding and parsing.
Note that some of the input forms (likaught goose cantg or vino) will be am-
biguous between different morphological parses. For nawwll consider the goal of
morphological parsing merely to list all possible parseg Will return to the task of
disambiguating among morphological parses in Ch. 5.
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LEXICON

MORPHOTACTICS

In order to build a morphological parser, we'll need at lg¢hstfollowing:

1. lexicon: the list of stems and affixes, together with basic infornratibout them
(whether a stem is a Noun stem or a Verb stem, etc.).

2. morphotactics: the model of morpheme ordering that explains which claskes o
morphemes can follow other classes of morphemes inside é Wwor example,
the fact that the English plural morpheme follows the nodhesathan preceding
it is a morphotactic fact.

3. orthographic rules: thesespelling rules are used to model the changes that
occur in aword, usually when two morphemes combine (e.gy, th ie spelling
rule discussed above that changiyg + -s to citiesrather thartitys).

The next section will discuss how to represent a simple warsf the lexicon just
for the sub-problem of morphological recognition, incluglhow to use FSAs to model
morphotactic knowledge.

In following sections we will then introduce the finite-gatansducer (FST) as a
way of modeling morphological features in the lexicon, addrassing morphological
parsing. Finally, we show how to use FSTs to model orthogcajites.

3.3 BUILDING A FINITE-STATE LEXICON

A lexicon is a repository for words. The simplest possibbaden would consist of
an explicit list of every word of the languagemMeryword, i.e., including abbreviations
(“AAA") and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, .

Since it will often be inconvenient or impossible, for theivas reasons we dis-
cussed above, to list every word in the language, computiexicons are usually
structured with a list of each of the stems and affixes of thguage together with a
representation of the morphotactics that tells us how tlaeyfit together. There are
many ways to model morphotactics; one of the most commoneditiite-state au-
tomaton. A very simple finite-state model for English nonhinflection might look
like Fig. 3.3.

irreg-pl-noun

irreg-sg-noun

Figure 3.3 A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3 assumes that the lexicon includes requdans (eg-noun)
that take the regulas plural (e.g.cat, dog fox, aardvark. These are the vast majority
of English nouns since for now we will ignore the fact that fiheral of words likefox
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have an inserted: foxes The lexicon also includes irregular noun forms that don't
take-s, both singulairreg-sg-noun (goose, mougeand pluralirreg-pl-noun (geese,

mice.
| reg-noun | ireg-pl-noun | irreg-sg-noun | plural |
fox geese goose -S
cat sheep sheep
aardvark mice mouse
A similar model for English verbal inflection might look likég. 3.4.
irreg-past-verb-form
. 3sg (-s)
irreg-verb-stem
Figure 3.4 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, ueeg-stem, and irreg-past-
verb-form), plus four more affix classes( past,-ed participle,-ing participle, and
third singular-s):

reg-verb-| irreg-verb-| irreg-past-| past| past-part| pres-part| 3sg
stem stem verb
walk cut caught -ed -ed -ing -S
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more cdeythan English inflec-
tional morphology, and so automata for modeling Englishvagion tend to be quite
complex. Some models of English derivation, in fact, areebdamn the more complex
context-free grammars of Ch. 12 (Sproat, 1993).

Consider a relatively simpler case of derivation: the motphtics of English ad-
jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreallyr

clear, clearer, clearest, clearly, unclear, unclearly
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An initial hypothesis might be that adjectives can have aroogpl prefix (in-), an
obligatory root big, cool etc.) and an optional suffix€r, -est or -ly). This might
suggest the the FSA in Fig. 3.5.

u adj-root -er -est -ly

@ @

€

Figure 3.5 An FSA for a fragment of English adjective morphology: Antétts Pro-
posal #1.

Alas, while this FSA will recognize all the adjectives in tiadle above, it will also
recognize ungrammatical forms likenbig, unfast oranger, or smally We need to set
up classes of roots and specify their possible suffixes. alljzsoot, would include
adjectives that can occur witm-and-ly (clear, happy andreal) while adj-root, will
include adjectives that canig, small), and so on.

This gives an idea of the complexity to be expected from Bhglierivation. As a
further example, we give in Figure 3.6 another fragment df&A for English nominal
and verbal derivational morphology, based on Sproat (1®®)er (1983), and Porter
(1980). This FSA models a number of derivational facts, sashhe well known
generalization that any verb ending-ime can be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a iassilize we can predict
the wordfossilizationby following statesyo, g1, andg,. Similarly, adjectives ending
in -al or -able at gs (equal formal, realizablg can take the suffixity, or sometimes
the suffix-nessto stategg (naturalnesscasualness We leave it as an exercise for the
reader (Exercise 3.1) to discover some of the individuakpkions to many of these
constraints, and also to give examples of some of the various and verb classes.

-izelV -ation/N

Figure 3.6  An FSA for another fragment of English derivational morpgl.

We can now use these FSAs to solve the problemaifphological recognition;
that is, of determining whether an input string of letterkesaup a legitimate English
word or not. We do this by taking the morphotactic FSAs, andging in each “sub-
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lexicon” into the FSA. That is, we expand each arc (e.g.réigenoun-stemarc) with
all the morphemes that make up the setegf-noun-stem The resulting FSA can then
be defined at the level of the individual letter.

Figure 3.7 Expanded FSA for a few English nouns with their inflection té&\that this
automaton will incorrectly accept the inpiiaixs We will see beginning on page 19 how tp
correctly deal with the inserteglin foxes

Fig. 3.7 shows the noun-recognition FSA produced by expepitie Nominal In-
flection FSA of Fig. 3.3 with sample regular and irregularn®tor each class. We can
use Fig. 3.7 to recognize strings likardvarksby simply starting at the initial state,
and comparing the input letter by letter with each word orheaatgoing arc, and so
on, just as we saw in Ch. 2.

3.4 HNITE-STATE TRANSDUCERS

FST

We've now seen that FSAs can represent the morphotactictsteuof a lexicon, and
can be used for word recognition. In this section we intredie finite-state trans-
ducer. The next section will show how transducers can beieppd morphological
parsing.

A transducer maps between one representation and anotfieitesstate trans-
ducer or FST is a type of finite automaton which maps between two sets obsysn
We can visualize an FST as a two-tape automaton which rezegor generatgsirs
of strings. Intuitively, we can do this by labeling each ardhe finite-state machine
with two symbol strings, one from each tape. Fig. 3.8 showsxample of an FST
where each arc is labeled by an input and output string, atgzhby a colon.

The FST thus has a more general function than an FSA; wher&AndEfines a
formal language by defining a set of strings, an FST defirretation between sets of
strings. Another way of looking at an FST is as a machine tbatls one string and
generates another. Here's a summary of this four-fold wakhioking about transduc-
ers:

e FST as recognizer:a transducer that takes a pair of strings as input and outputs

acceptf the string-pair is in the string-pair language, aegkctif it is not.
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REGULAR
RELATIONS

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

e FST as generator:a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

e FST as translator: a machine that reads a string and outputs another string
e FST as set relater:a machine that computes relations between sets.

All of these have applications in speech and language psotwes-or morphologi-
cal parsing (and for many other NLP applications), we willgghe FST as translator
metaphor, taking as input a string of letters and producsguput a string of mor-
phemes.

Let's begin with a formal definition. An FST can be formallyfided with 7 pa-
rameters:

Q a finite set ofN stateqo,q1,-..,0qn-1
> a finite set corresponding to the input alphabet
A a finite set corresponding to the output alphabet

Jo € Q the start state
F CQ the set of final states

o(q,w) the transition function or transition matrix between stat®8iven a
stateq € Q and a stringv € ¥*, 8(qg,w) returns a set of new states
Q € Q. dis thus a function fron@ x >* to 22 (because there are
2Q possible subsets dp). & returns a set of states rather than a
single state because a given input may be ambiguous in wtatdh s
it maps to.

o(g,w) the output function giving the set of possible output stsifay each
state and input. Given a state= Q and a stringwv € ¥, o(q,w)
gives a set of output strings, each a string A*. ¢ is thus a func-
tion fromQ x Z* to 22

Where FSAs are isomorphic to regular languages, FSTs amoighic toregu-
lar relations. Regular relations are sets of pairs of strings, a natuttaision of the
regular languages, which are sets of strings. Like FSAs agdlar languages, FSTs
and regular relations are closed under union, although nege they are not closed
under difference, complementation and intersection daliin some useful subclasses
of FSTsareclosed under these operations; in general FSTs that aregotented with
the e are more likely to have such closure properties). BesidegnukSTs have two
additional closure properties that turn out to be extrernsiful:
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INVERSION

COMPOSITION

PROJECTION

SEQUENTIAL
TRANSDUCERS

e inversion: The inversion of a transduc@r (T 1) simply switches the input and
output labels. Thus it maps from the input alphabkto the output alphab&d,
T~ maps fromOto .

e composition If Ty is a transducer frorh to O; andT; a transducer fron®; to
Oy, thenT; o T, maps fromi; to O,.

Inversion is useful because it makes it easy to convert adsSJarser into an FST-
as-generator.

Composition is useful because it allows us to take two traoscs that run in series
and replace them with one more complex transducer. Conigogibrks as in algebra;
applyingTi o T, to an input sequencgis identical to applyindg; to Sand thenT; to
the result; thudy o To(S) = To(T1(9)).

Fig. 3.9, for example, shows the compositiorjaab]+  with [b:c]+ to produce

[a:c]+
alb b:c a.c
(%) o (%) = (%

Figure 3.9 The composition ofa:b]+ with [b:c]+ to producda:c]+

Theprojection of an FST is the FSA that is produced by extracting only one sid
of the relation. We can refer to the projection to the left pper side of the relation as
theupper orfirst projection and the projection to the lower or right side & thlation
as thelower or secondprojection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeteitinishat a given input
may translate to many possible output symbols. Thus usingrgéFSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTie glow in the general
case. This suggests that it would nice to have an algorittoorieert a nondeterministic
FST to a deterministic one. But while every non-determiniBSA is equivalent to
some deterministic FSA, not all finite-state transducensteadeterminized.

Sequential transducers by contrast, are a subtype of transducers that are deter-
ministic on their input. At any state of a sequential trarcgtueach given symbol of
the input alphabeX can label at most one transition out of that state. Fig. 3il@sg
an example of a sequential transducer from Mohri (1997)e tioat here, unlike the
transducer in Fig. 3.8, the transitions out of each statelarerministic based on the
state and the input symbol. Sequential transducers candgpsiton symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequentiaéoroutput. Mohri's trans-
ducerin Fig. 3.10 is not, for example, since two distinchsiions leaving state 0 have
the same output. Since the inverse of a sequential transducer may thusenséb
quential, we always need to specify the direction of thesdaiction when discussing
sequentiality. Formally, the definition of sequential sdncers modifies th& ando
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Figure 3.10 A sequential finite-state transducer, from Mohri (1997).

functions slightly;5 becomes a function frof® x * to Q (rather than to ), ando
becomes a function froi x =* to A* (rather than to 2).

SUBSEQUENTIAL One generalization of sequential transducers istisequential transducei(Schitzenberger,
1977), which generates an additional output string at tred §tates, concatenating it
onto the output produced so far.

What makes sequential and subsequential transducerstamptheir efficiency;
because they are deterministic on input, they can be predéssime proportional to
the number of symbols in the input (they are linear in theuinlength) rather than
proportional to some much larger number which is a functibtme number of states.
Another advantage of subsequential transducers is thiag #xést efficient algorithms
for their determinization (Mohri, 1997) and minimizatiddd@hri, 2000), extending the
algorithms for determinization and minimization of fingtate automata that we saw
in Ch. 2. also an equivalence algorithm.

While both sequential and subsequential transducers temdeistic and efficient,
neither of them is able to handle ambiguity, since they tlans each input string
to exactly one possible output string. Since ambiguity isuxial property of natu-
ral language, it will be useful to have an extension of subsatjal transducers that
can deal with ambiguity, but still retain the efficiency arttier useful properties of
sequential transducers. One such generalization of subségl transducers is the
p-subsequentialtransducer. Ap-subsequentialtransducer allows fop(p > 1) final
output strings to be associated with each final state (M&@BAg6). They can thus han-
dle a finite amount of ambiguity, which is useful for many NlaBks. Fig. 3.11 shows
an example of a 2-subsequential FST.

Figure 3.11 A 2-subsequential finite-state transducer, from Mohri {)99

Mohri (1996, 1997) show a number of tasks whose ambiguitybedimited in this
way, including the representation of dictionaries, the piation of morphological
and phonological rules, and local syntactic constraintsr dach of these kinds of
problems, he and others have shown that theypaebsequentializableand thus can
be determinized and minimized. This class of transducefadies many, although not
necessarily all, morphological rules.



Section 3.5.

FSTs for Morphological Parsing 17

3.5 FSTS FORMORPHOLOGICALPARSING

SURFACE

LEXICAL TAPE

(3.2)

(33)

FEASIBLE PAIRS

DEFAULT PAIRS

Let’s now turn to the task of morphological parsing. Givea tputcats for instance,
we’'d like to outputcat +N +PI, telling us thatcatis a plural noun. Given the Spanish
input bebo(‘l drink’), we'd like to outputbeber +V +PInd +1P +Sgtelling us that
bebois the present indicative first person singular form of tharSgh vertbeber ‘to
drink’.

In thefinite-state morphology paradigm that we will use, we represent a word as
a correspondence betweerneaical level which represents a concatenation of mor-
phemes making up a word, and therface level, which represents the concatenation
of letters which make up the actual spelling of the word. Big.2 shows these two
levels for (Englishkats

Lexical§ cla|t [+N[+PI f

Surface§ cla|t]|s f

Figure 3.12 Schematic examples of the lexical and surface tapes; tbalacinsducers
will involve intermediate tapes as well.

For finite-state morphology it's convenient to view an FShaging two tapes. The
upper or lexical tape, is composed from characters from one alphabethelower
or surfacetape, is composed of characters from another alph&bét thetwo-level
morphology of Koskenniemi (1983), we allow each arc only to have a sisglabol
from each alphabet. We can then combine the two symbol agibalandA to create
a new alphabett’, which makes the relationship to FSAs quite cleat.is a finite
alphabet of complex symbols. Each complex symbol is conghboan input-output
pairi : 0; one symboi from the input alphabeX, and one symbab from an output
alphabef\, thusz’ C ¥ x A. £ andA may each also include the epsilon symtolhus
where an FSA accepts a language stated over a finite alphfadiegte symbols, such
as the alphabet of our sheep language:

>={b,a!}
an FST defined this way accepts a language statedpa¥erof symbols, as in:
Y ={a:a,b:b !l a:l a:e e:!}

In two-level morphology, the pairs of symbolsihare also callefeasible pairs Thus
each feasible pair symbal: b in the transducer alphabEt expresses how the symbol
a from one tape is mapped to the symbain the other tape. For exampe ¢ means
that ana on the upper tape will correspond mothingon the lower tape. Just as for
an FSA, we can write regular expressions in the complex aipt¥. Since it's most
common for symbols to map to themselves, in two-level molgipowe call pairs like
a:adefault pairs, and just refer to them by the single leteer
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MORPHEME
BOUNDARY

#
WORD BOUNDARY

We are now ready to build an FST morphological parser out oadier morpho-
tactic FSAs and lexica by adding an extra “lexical” tape ameldappropriate morpho-
logical features. Fig. 3.13 shows an augmentation of Figjwith the nominal mor-
phological features{Sg and+Pl ) that correspond to each morpheme. The symbol
" indicates amorpheme boundary, while the symbok indicates avord boundary.
The morphological features map to the empty stiray the boundary symbols since
there is no segment corresponding to them on the output tape.

Figure 3.13 A schematic transducer for English nominal number inflecTigum The

symbols above each arc represent elements of the morpbalggirse in the lexical tape
the symbols below each arc represent the surface tape (dntdrenediate tape, to be
described later), using the morpheme-boundary symbol "ward-boundary marker #.
The labels on the arcs leavimg are schematic, and need to be expanded by individual
words in the lexicon.

In order to use Fig. 3.13 as a morphological noun parsergtis¢o be expanded
with all the individual regular and irregular noun stemglaging the labelseg-noun
etc. In order to do this we need to update the lexicon for thisgducer, so that irreg-
ular plurals likegeesewill parse into the correct steigoose +N +PIl . We do this
by allowing the lexicon to also have two levels. Since swefgeesemaps to lexical
goose , the new lexical entry will bed:g o:e o:e s:s e:e ". Regular forms
are simpler; the two-level entry fdox will now be “f:f 0:0 x:x ", but by relying
on the orthographic convention ttfastands fof:f and so on, we can simply refer to
it asfox and the form fogeeseas ‘g o:e o:e s e . Thus the lexicon will look
only slightly more complex:

| reg-noun | irreg-pl-noun | irreg-sg-noun |
fox goeoese goose
cat sheep sheep
aardvark mo:iues.ce mouse

The resulting transducer, shown in Fig. 3.14, will map plm@uns into the stem
plus the morphological markeiPI , and singular nouns into the stem plus the mor-
phological markerSg. Thus a surfaceatswill map tocat +N +Pl . This can be
viewed in feasible-pair format as follows:
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Figure 3.14 A fleshed-out English nominal inflection FSlJey, expanded fronTnym
by replacing the three arcs with individual word stems (anfgw sample word stems are
shown).

c.c aa tt +N: e +PI "s#

Since the output symbols include the morpheme and word ymdarkers ~ and
#, the lower labels Fig. 3.14 do not correspond exactly tcstivéace level. Hence we
refer to tapes with these morpheme boundary markers in Fig &sintermediate
tapes; the next section will show how the boundary markesrisaved.

Lexical 3 flo]|x|+N|+PI f
Intermediate 3 flo|x|™|s|# f
Figure 3.15 A schematic view of the lexical and intermediate tapes.

3.6 TRANSDUCERS ANDORTHOGRAPHICRULES

SPELLING RULES

The method described in the previous section will succégsfecognize words like
aardvarksand mice But just concatenating the morphemes won't work for cases
where there is a spelling change; it would incorrectly regat input likefoxesand
accept an input likdoxs We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introduspredling rules (or ortho-
graphic rules) This section introduces a number of notations for writinigts rules
and shows how to implement the rules as transducers. In glemiee ability to im-
plement rules as a transducer turns out to be useful thraugipeech and language
processing. Here'’s some spelling rules:
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(3.4)

[Name | Description of Rule | Example |
Consonant | 1-letter consonant doubled befeirg/-ed| beg/begging
doubling
E deletion Silent e dropped beforéng and-ed make/making

E insertion |e added afters,-z-x,-ch, -shbefore-s watch/watches
Y replacement-y changes teie before-s, -i before-ed | try/tries
Kinsertion |verbs ending wittvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as inputglsiconcatenation of
morphemes (the “intermediate output” of the lexical trarst in Fig. 3.14) and pro-
ducing as output a slightly-modified (correctly-spelledhcatenation of morphemes.
Fig. 3.16 shows in schematic form the three levels we aréngibout: lexical, inter-
mediate, and surface. So for example we could write an Etinseule that performs
the mapping from the intermediate to surface levels showrign3.16. Such a rule

Lexical é flo|x|[+N|[+PI f
Intermediate § flo|x|"N|s|# f
Surface § flo|x|e|s f

Figure 3.16  An example of the lexical, intermediate, and surface taBesween each
pair of tapes is a two-level transducer; the lexical transdwf Fig. 3.14 between the
lexical and intermediate levels, and the E-insertion smgelule between the intermediat
and surface levels. The E-insertion spelling rule insemts an the surface tape when th
intermediate tape has a morpheme boundary ~ followed by trpimme-s.

W

might say something like “insert aon the surface tape just when the lexical tape has
a morpheme ending ix(or z, etc) and the next morpheme . Here’s a formalization

of the rule:

X
e—ell sy __s#
z

This is the rule notation of Chomsky and Halle (1968); a rulehe forma —
b/c__d means “rewritea asb when it occurs betweeaandd”. Since the symbol
€ means an empty transition, replacing it means insertingesioimg. Recall that the
symbol ~ indicates a morpheme boundary. These boundagededeted by including
the symbol "¢ in the default pairs for the transducer; thus morpheme baryndarkers
are deleted on the surface level by default. The # symbolgeeial symbol that marks
a word boundary. Thus (3.4) means “insertesaiter a morpheme-final, s, or z, and
before the morphem&. Fig. 3.17 shows an automaton that corresponds to this rule

The idea in building a transducer for a particular rule isxtpress only the con-
straints necessary for that rule, allowing any other stahgymbols to pass through
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other

Figure 3.17 The transducer for the E-insertion rule of (3.4), extendednfa similar

transducer in Antworth (1990). We additionally need to tkelde # symbol from the
surface string; this can be done either by interpreting ytmeb®| # as the pair #; or by

postprocessing the output to remove word boundaries.

unchanged. This rule is used to ensure that we can only seeetpair if we are in the
proper context. So staty, which models having seen only default pairs unrelated to
the rule, is an accepting state, agiiswhich models having seeregs, orx. gz models
having seen the morpheme boundary afterztseor x, and again is an accepting state.
Stategs models having just seen the E-insertion; it is not an acogsiate, since the
insertion is only allowed if it is followed by themorpheme and then the end-of-word
symbol#.

Theothersymbol is used in Fig. 3.17 to safely pass through any pamsads that
don'’t play a role in the E-insertion ruleather means “any feasible pair that is not in
this transducer”. So for example when leaving stafewe go toq; on thez, s, or x
symbols, rather than following thatherarc and staying ig. The semantics afther
depends on what symbols are on other arcs; giisenentioned on some arcs, it is (by
definition) not included irother, and thus, for example, is explicitly mentioned on the
arc fromqy to qo.

Atransducer needs to correctly reject a string that aptiiesule when it shouldn't.
One possible bad string would have the correct environnmanthie E-insertion, but
have no insertion. Stat®; is used to ensure that tleds always inserted whenever the
environment is appropriate; the transducer reacg@mly when it has seen aafter
an appropriate morpheme boundary. If the machine is in gtaa@d the next symbol
is #, the machine rejects the string (because there is no leggaition or# from gs).
Fig. 3.18 shows the transition table for the rule which matkesillegal transitions
explicit with the “~" symbol.

The next section will show a trace of this E-insertion trarsa running on a sam-
ple input string.
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Staté Input s:s X:X z:z “e €.e # other|

do: 1 1 1 0 - 0 0

di: 1 1 1 2 - 0 0

O2: 5 1 1 0 3 0 0

Gs 4 - - - - - -

04 - - - - - 0 -

ds 1 1 1 2 - - 0
Figure 3.18 The state-transition table for E-insertion rule of Fig.73.@xtended from a
similar transducer in Antworth (1990).

3.7 COMBINING FST LEXICON AND RULES

CASCADE

We are now ready to combine our lexicon and rule transduoersirsing and generat-
ing. Fig. 3.19 shows the architecture of a two-level morphglsystem, whether used
for parsing or generating. The lexicon transducer mapsdetvthe lexical level, with
its stems and morphological features, and an intermediagtthat represents a simple
concatenation of morphemes. Then a host of transducers,repoesenting a single
spelling rule constraint, all run in parallel so as to mamsan this intermediate level
and the surface level. Putting all the spelling rules in pelrégs a design choice; we
could also have chosen to run all the spelling rules in séags long cascade), if we
slightly changed each rule.

3 flo| X |+N|[+PL E

LEXICON-FST

§ fox’\s#f

FST1 orthographic rules FST

L) n

§ flo|x|e]|s f

Figure 3.19  Generating or parsing with FST lexicon and rules

The architecture in Fig. 3.19 is a two-levascadeof transducers. Cascading two
automata means running them in series with the output of tsteféieding the input to
the second. Cascades can be of arbitrary depth, and ea¢miighe be built out of
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AMBIGUITY

DISAMBIGUATING

many individual transducers. The cascade in Fig. 3.19 hagransducers in series:
the transducer mapping from the lexical to the intermedatels, and the collection
of parallel transducers mapping from the intermediatedcstirface level. The cascade
can be run top-down to generate a string, or bottom-up toepgr&ig. 3.20 shows a
trace of the systeracceptinghe mapping fronfox +N +PL to foxes

Lexical§ flo|x [+N[+PI | |§

T

lex @) (D @’) 6 @

Intermediate 3 flo|x|[2|s|# | f

Te-insert 0 OJ(%1234 0

Sun’acezfoxes ||§

Figure 3.20  Acceptingfoxes The lexicon transducéligy from Fig. 3.14 cascaded with
the E-insertion transducer in Fig. 3.17.

The power of finite-state transducers is that the exact saseade with the same
state sequences is used when the machine is generatingfdeegape from the lexical
tape, or when it is parsing the lexical tape from the surfapet For example, for
generation, imagine leaving the Intermediate and Surfapestblank. Now if we run
the lexicon transducer, givédax +N +PL , it will producefox”s#on the Intermediate
tape via the same states that it accepted the Lexical armiriatiate tapes in our earlier
example. If we then allow all possible orthographic trarcgds to run in parallel, we
will produce the same surface tape.

Parsing can be slightly more complicated than generatiecalse of the problem
of ambiguity. For examplefoxescan also be a verb (albeit a rare one, meaning “to
baffle or confuse”), and hence the lexical parseféxescould befox +V +3Sg as
well asfox +N +PL . How are we to know which one is the proper parse? In fact, for
ambiguous cases of this sort, the transducer is not capbtkrming. Disambiguat-
ing will require some external evidence such as the surroundards. Thusoxesis
likely to be a noun in the sequenksaw two foxes yesterdayut a verb in the sequence
That trickster foxes me every timé&Ve will discuss such disambiguation algorithms in
Ch. 5and Ch. 20. Barring such external evidence, the bestansducer can do is just
enumerate the possible choices; so we can tranddut&#into bothfox +V +3SG
andfox +N +PL .

There is a kind of ambiguity that we need to handle: local guity that occurs
during the process of parsing. For example, imagine parsiagnput verbassess
After seeingass our E-insertion transducer may propose that ¢htdat follows is
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inserted by the spelling rule (for example, as far as thesttacer is concerned, we
might have been parsing the wasdse} It is not until we don't see th# afterasses
but rather run into anothey that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algoritheesiio incorporate some
sort of search algorithm. Exercise 3.7 asks the reader tafyrtbé algorithm for non-
deterministic FSA recognition in Fi@?in Ch. 2 to do FST parsing.

Note that many possible spurious segmentations of the,ispah as parsingssess
as "a"s"ses”s will be ruled out since no entry in the lexicimwatch this string.

Running a cascade, particularly one with many levels, caartvdeldy. Luckily,
we've already seen how to compose a cascade of transducsesi@s into a single
more complex transducer. Transducers in parallel can bébicwt by automaton

INTERSECTION intersection. The automaton intersection algorithm just takes the Grmeproduct of

the states, i.e., for each staggn machine 1 and statg in machine 2, we create a new
stateqi;. Then for any input symbad, if machine 1 would transition to statg and
machine 2 would transition to statg, we transition to statg,m. Fig. 3.21 sketches
how this intersection/X) and compositiond) process might be carried out.

LEXICON-FST LEXICON-FST

I LEXICON-FST
0 e O N I ==

FST,

T T

FST, oo @‘ FST, (=FST/*FST,_.*FSTy) ‘
ST S PP P ST T

Figure 3.21 Intersection and composition of transducers.

Since there are a number of ruld=ST compilers, it is almost never necessary in
practice to write an FST by hand. Kaplan and Kay (1994) gieerttathematics that
define the mapping from rules to two-level relations, andwarth (1990) gives details
of the algorithms for rule compilation. Mohri (1997) givelgarithms for transducer
minimization and determinization.

3.8 LEXICON-FREEFSTS: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is tkendard algorithm for
morphological parsing, there are simpler algorithms tloattdequire the large on-line
lexicon demanded by this algorithm. These are used espaoiaiformation Retrieval
(IR) tasks like web search (Ch. 23), in which a query such as@édan combination
kevworos  Of relevantkeywords or phrases, e.g.marsupial OR kangaroo OR koglaeturns
documents that have these words in them. Since a documéntheitvordmarsupials
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STEMMING

might not match the keywortharsupial some IR systems first run a stemmer on the
query and document words. Morphological information in ERthus only used to
determine that two words have the same stem; the suffixeb@mer away.

One of the most widely used sustemmingalgorithms is the simple and efficient
Porter (1980) algorithm, which is based on a series of siropteaded rewrite rules.
Since cascaded rewrite rules are just the sort of thing thatide easily implemented
as an FST, we think of the Porter algorithm as a lexicon-fi8€ Btemmer (this idea
will be developed further in the exercises (Exercise 3.6 &lgorithm contains rules
like these:

ATIONAL — ATE (e.g., relational- relate)
ING — ¢ if stem contains vowel (e.g., motorirg motor)

See Porter (1980) or Martin Porter’s official homepage ferRliorter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat ivette performance
of information retrieval, especially with smaller docurntge(the larger the document,
the higher the chance the keyword will occur in the exact foisad in the query).
Nonetheless, not all IR engines use stemming, partly becafustemmer errors such
as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

TOKENIZATION

We have focused so far in this chapter on a problem of segti@mtahow words
can be segmented into morphemes. We turn now to a brief discusf the very
related problem of segmenting running text into words antdesees. This task is
calledtokenization.

Word tokenization may seem very simple in a language likeliEmghat separates
words via a special ‘space’ character. As we will see belawavery language does
this (Chinese, Japanese, and Thai, for example, do not).aRilbser examination
will make it clear that whitespace is not sufficient by itse@onsider the following
sentences from a Wall Street Journal and New York Timesl@rtiespectively:

Mr. Sherwood said reaction to Sea Containers’ proposal
has been "very positive." In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
$62.625, up 62.5 cents.
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SENTENCE
SEGMENTATION

“l said, ‘what're you? Crazy?” " said Sadowsky. “I
can't afford to do that.”

Segmenting purely on white-space would produce words fikee:
cents. said, positive." Crazy?

We could address these errors by treating punctuation,diiiad to whitespace, as a
word boundary. But punctuation often occurs word integn@ll examples likem.p.h,
Ph.D, AT&T, cap’n, 01/02/06 andgoogle.comSimilarly, assuming that we wafP.5

to be a word, we'll need to avoid segmenting every periodiesthat will segment this
into 62 and 5. Number expressions introduce other commicsaias well; while com-
mas normally appear at word boundaries, commas are uselé imsmbers in English,
every three digits555,500.50 Languages differ on punctuation styles for numbers;
many continental European languages like Spanish, FramchGerman, by contrast,
uses a comma to mark the decimal point, and spaces (or soesefieriods) where
English puts comma&55 500,50

Another useful task a tokenizer can do for us is to expanit ddntractions that
are marked by apostrophes, for example convenrtihgt're above to the two tokens
what are andwe’re to we are This task is complicated by the fact that apostrophes
are quite ambiguous, since they are also used as genitikersdas irthe book’s over
or in Containers’above) or as quotative markers (asviat're you? Crazy?'above).
Such contractions occur in other alphabetic languagelsidimg articles and pronouns
in French ['ai, I’'hommeé. While these contractions tend to be clitics, not all ctitare
marked this way with contraction. In general, then, segingrand expanding clitics
can be done as part of the process of morphological parsiegepted earlier in the
chapter.

Depending on the application, tokenization algorithms rabsp tokenize multi-
word expressions likBlew Yorkor rock 'n’ roll , which requires a multiword expression
dictionary of some sort. This makes tokenization intimatetd up with the task of
detecting names, dates, and organizations, which is cadeted entity detectioand
will be discussed in Ch. 22.

In addition to word segmentatioeentence segmentatiois a crucial first step in
text processing. Segmenting a text into sentences is ggneamed on punctuation.
This is because certain kinds of punctuation (periods, tipresnarks, exclamation
points) tend to mark sentence boundaries. Question matkexatamation points are
relatively unambiguous markers of sentence boundariemdgon the other hand, are
more ambiguous. The period character ‘.’ is ambiguous betveesentence boundary
marker and a marker of abbreviations like or Inc. The previous sentence that you
just read showed an even more complex case of this ambigwiyich the final period
of Inc. marked both an abbreviation and the sentence boundary midkehis reason,
sentence tokenization and word tokenization tend to beesddd jointly.

In general, sentence tokenization methods work by buildinginary classifier
(based on a sequence of rules, or on machine learning) wieicides if a period is
part of the word or is a sentence boundary marker. In makiisgdigcision, it helps to
know if the period is attached to a commonly used abbrewiatitus an abbreviation
dictionary is useful.
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State-of-the-art methods for sentence tokenization asecban machine learning
and will be introduced in later chapters. But a useful firgspstan still be taken via a
sequence of regular expressions. We introduce here thedirsta word tokenization
algorithm. Fig. 3.22 gives a simple Perl word tokenizatitgoathm based on Grefen-
stette (1999). The algorithm is quite minimal, designedniyaio clarify many of the
segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expressiostitution rules. The
first rule separates unambiguous punctuation like questimks and parentheses. The
next rule segments commas unless they are inside numbergheWedisambiguate
apostrophes and pull off word-final clitics. Finally, we tedh periods, using a (toy)
abbreviation dictionary and some heuristics for deteabithgr abbreviations.

#!/usr/bin/perl

$letternumber = "[A-Za-z0-9]";

$notletter = "[*A-Za-z0-9]";

$alwayssep = "[W2IO\A\T

$clitic = "([:]-'SI'DI'M['LLRE'VE|N'T|'s|'d|'m[ l'ref'velnt)”;

$abbr{"Co."} = 1; $abbr{"Dr."} = 1; $abbr{"Jan."} = 1; $abbr {"Feb."} = 1,
while ($line = <>){ # read the next line from standard input

# put whitespace around unambiguous separators
$line =" s/$alwayssep/ $& /g;

# put whitespace around commas that aren’t inside numbers
$line =" s/(["0-9]),/$1 , /g;

$line =" s/,([(0-9])/ , $1/g;

# distinguish singlequotes from apostrophes by

# segmenting off single quotes not preceded by letter
$line =" s/"/$& g;

$line =" s/($notletter)/$1 '/g;

# segment off unambiguous word-final clitics and punctuati on
$line =" s/$clitics/ $&/g;
$line =" s/$clitic($notletter)/ $1 $2/g;

# now deal with periods. For each possible word
@possiblewords=split(\s+/,$line);
foreach $word (@possiblewords) {
# if it ends in a period,
if (($word =" /$letternumber\./)
&& !($abbr{$word}) # and isn't on the abbreviation list
# and isn't a sequence of letters and periods (U.S.)
# and doesn't resemble an abbreviation (no vowels: Inc.)
&& !($word ="
I"([A-Za-z)\.([A-Za-z)\.)+|[A-Z][bcdfghj-nptvxz]+\. )$/) {
# then segment off the period
$word =" s\.$/ \./;

# expand clitics
$word ="s/'ve/havel;
$word ="s/'m/am/;
print $word," *;

}
print "\n";

Figure 3.22 A sample English tokenization script, adapted from Gretfettes (1999)
and Palmer (2000). A real script would have a longer abbtievialictionary.
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MAXIMUM MATCHING

The fact that a simple tokenizer can be build with such simgdgilar expression
patterns suggest that tokenizers like the one in Fig. 3.8deeaeasily implemented in
FSTs. Thisis indeed the case, and (Karttunen et al., 1926)Beesley and Karttunen,
2003) give descriptions of such FST-based tokenizers.

3.9.1 Segmentation in Chinese

We mentioned above that some languages, including Chidapanese, and Thai, do
not use spaces to mark potential word-boundaries. Altsaegmentation methods
are used for these languages.

In Chinese, for example, words are composed of charactensrkashanzi Each
character generally represents a single morpheme and i®ymoeable as a single
syllable. Words on average are about 2.4 characters longm@lesalgorithm that does
remarkably well for segmenting Chinese, and is often usedaseline comparison for
more advanced methods, is a version of greedy search ecafiginum matching or
sometimesnaxmatch. The algorithm requires a dictionary (wordlist) of the laiage.

The maximum matching algorithm starts by pointing at theifir@igg of a string. It
chooses the longest word in the dictionary that matcheshé at the current position.
The pointer is then advanced past each character in that Werd word matches, the
pointer is instead advanced one character (creating a lvr@ater word). The algo-
rithm is then iteratively applied again starting from thevrgointer position. To help
visualize this algorithm, Palmer (2000) gives an Englishlagy, which approximates
the Chinese situation by removing the spaces from the Hngistencéhe table down
thereto produceahetabledownthereThe maximum match algorithm (given a long En-
glish dictionary) would first match the wottetain the input, since that is the longest
sequence of letters that matches a dictionary word. Sgafitinm the end otheta the
longest matching dictionary word iHed, followed byownand therthereg producing
the incorrect sequendketa bled own there

The algorithm seems to work better in Chinese (with suchtshords) than in
languages like English with long words, as our failed exansplows. Even in Chinese,
however, maxmatch has a number of weakness, particulatly wmknown words
(words not in the dictionary) ounknown genres(genres which differ a lot from the
assumptions made by the dictionary builder).

There is an annual competition (technically calldsbkeoff) for Chinese segmen-
tation algorithms. These most successful modern algostfon Chinese word seg-
mentation are based on machine learning from hand-segthiaieing sets. We will
return to these algorithms after we introduce probabilistethods in Ch. 5.
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3.10 DETECTING AND CORRECTINGSPELLING ERRORS

OCR

REAL-WORD
ERRORS

ALGERNON: But my own sweet Cecily, | have never written you any letters

CEcCILY: You need hardly remind me of that, Ernest. | remember ordywell

that | was forced to write your letters for you. | wrote alwakigee times a week,

and sometimes oftener.

ALGERNON: Oh, do let me read them, Cecily?

CEcILY: Oh, | couldn’t possibly. They would make you far too corekitThe

three you wrote me after | had broken off the engagement ateaatiful, and

so badly spelled, that even now | can hardly read them withotibg a little.
Oscar Wilde,The Importance of being Earnest

Like Oscar Wilde's fabulous Cecily, a lot of people were #ing about spelling during
the last turn of the century. Gilbert and Sullivan providemaxamplesThe Gondo-
liers’ Giuseppe, for example, worries that his private secrasitshaky in his spelling”
while lolanthés Phyllis can “spell every word that she uses”. Thorsteiblga’s ex-
planation (in his 1899 classithe Theory of the Leisure Clgssas that a main purpose
of the “archaic, cumbrous, and ineffective” English spajlisystem was to be diffi-
cult enough to provide a test of membership in the leisurescl&Vhatever the social
role of spelling, we can certainly agree that many more ofradike Cecily than like
Phyllis. Estimates for the frequency of spelling errors imrfan typed text vary from
0.05% of the words in carefully edited newswire text to 38%lifficult applications
like telephone directory lookup (Kukich, 1992).

In this section we introduce the problem of detecting andemting spelling errors.
Since the standard algorithm for spelling error correcisoprobabilistic, we will con-
tinue our spell-checking discussion later in Ch. 5 after wfe the probabilistic noisy
channel model.

The detection and correction of spelling errors is an irgegart of modern word-
processors and search engines, and is also important iactiog errors inoptical
character recognition (OCR), the automatic recognition of machine or hand-printed
characters, andn-line handwriting recognition, the recognition of human printed or
cursive handwriting as the user is writing.

Following Kukich (1992), we can distinguish three increagy broader problems:

1. non-word error detection: detecting spelling errors that result in non-words
(like graffefor giraffe).

2. isolated-word error correction: correcting spelling errors that result in non-
words, for example correctingraffe to giraffe, but looking only at the word in
isolation.

3. context-dependent error detection and correction:using the context to help
detect and correct spelling errors even if they accidgntaéult in an actual
word of English (eal-word errors). This can happen from typographical er-
rors (insertion, deletion, transposition) which accidéigtproduce a real word
(e.g.,therefor three), or because the writer substituted the wrong spelling of a
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homophone or near-homophone (edgsserfor desert or piecefor peacs.

Detecting non-word errors is generally done by marking aagdvthat is not found
in a dictionary. For example, the misspelligeaffe above would not occur in a dictio-
nary. Some early research (Peterson, 1986) had suggeateuitih spelling dictionar-
ies would need to be kept small, because large dictionavigsin very rare words that
resemble misspellings of other words. For example the rarelswontor veeryare
also common misspelling afon’t andvery. In practice, Damerau and Mays (1989)
found that while some misspellings were hidden by real wamds larger dictionary,
the larger dictionary proved more help than harm by avoidiragking rare words as
errors. This is especially true with probabilistic speskection algorithms that can
use word frequency as a factor. Thus modern spell-checkistg s tend to be based
on large dictionaries.

The finite-state morphological parsers described througthis chapter provide a
technology for implementing such large dictionaries. Byirgy a morphological parser
for a word, an FST parser is inherently a word recognizereéa an FST morpho-
logical parser can be turned into an even more efficient FSAlwecognizer by using
theprojection operation to extract the lower-side language graph. SudhdiSionar-
ies also have the advantage of representing productivelrology like the Englishs
and-edinflections. This is important for dealing with new legititracombinations of
stems and inflection . For example, a new stem can be easigdaddhe dictionary,
and then all the inflected forms are easily recognized. Tlakan FST dictionaries es-
pecially powerful for spell-checking in morphologicaligih languages where a single
stem can have tens or hundreds of possible surface forms.

FST dictionaries can thus help with non-word error detecti®But how about error
correction? Algorithms for isolated-word error correctioperate by finding words
which are the likely source of the errorful form. For exampuerrecting the spelling
errorgrafferequires searching through all possible words gk@ffe, graf, craft, grail,
etc, to pick the most likely source. To choose among thesentiat sources we need a
distance metricbetween the source and the surface error. Intuitigghgffe is a more
likely source thargrail for graffe, becauseiraffe is closer in spelling tgraffe than
grail is to graffe. The most powerful way to capture this similarity intuitioequires
the use of probability theory and will be discussed in Ch. He algorithm underlying
this solution, however, is the non-probabilisticnimum edit distance algorithm that
we introduce in the next section.

3.11 MINIMUM EDIT DISTANCE

Deciding which of two words is closer to some third word inléipg is a special case of
oistance  the general problem aftring distance The distance between two strings is a measure
of how alike two strings are to each other.

5 Early spelling error detectors for English, by contrasfdy allowed any word to have any suffix — thus
Unix sPELLaccepts bizarre prefixed words likeisclamandantiundogginglyand suffixed words based on
thelike thehoodandtheness
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Many important algorithms for finding string distance rety some version of the
MINMMEDT - minimum edit distance algorithm, named by Wagner and Fischer (1974) but indepen-
dently discovered by many people; see the History sectiofiof6 for a discussion
of the history of these algorithms. The minimum edit disebetween two strings is
the minimum number of editing operations (insertion, defetsubstitution) needed to
transform one string into another. For example the gap leriviee wordsntention
ALGNMENT — andexecutionis five operations, shown in Fig. 3.23 asaignment between the two
strings. Given two sequences,aignmentis a correspondance between substrings of
the two sequences. Thus | aligns with the empty string, N ®ijth with X, and so on.
Beneath the aligned strings is another representatiomiess# symbols expressing an
operation list for converting the top string into the bottom string; d fotet®n, s for
substitution, i for insertion.

| NTION
|

NTE =
NN
*EXECUTION
dss is

Figure 3.23  Representing the minimum edit distance between two stasgaalign-
ment. The final row gives the operation list for converting the stpng into the bottom
string; d for deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of tbhpseations. The
Levenshteindistance between two sequences is the simplest weightitay fa which
each of the three operations has a cost of 1 (Levenshtei) £9us the Levenshtein
distance betweeimtentionandexecutions 5. Levenshtein also proposed an alternate
version of his metric in which each insertion or deletion hasst of one, and substitu-
tions are not allowed (equivalent to allowing substitutiout giving each substitution a
cost of 2, since any substitution can be represented by seetion and one deletion).
Using this version, the Levenshtein distance betwagantionandexecutioris 8.

e CIAMIC The minimum edit distance is computed Bynamic programming. Dynamic
programming is the name for a class of algorithms, first ohiieed by Bellman (1957),
that apply a table-driven method to solve problems by comgisolutions to subprob-
lems. This class of algorithms includes the most commosdalgorithms in speech
and language processing; besides minimum edit distaresg thclude th¥/iterbi and
forward algorithms (Ch. 6), and the YK andEarley algorithm (Ch. 13).

The intuition of a dynamic programming problem is that a éapgoblem can be
solved by properly combining the solutions to various sobfgms. For example,
consider the sequence or “path” of transformed words thapeise the minimum edit
distance between the stringgentionandexecutiorshown in Fig. 3.24.

Imagine some string (perhaps it éxention that is in this optimal path (what-
ever it is). The intuition of dynamic programming is thaeientionis in the optimal

6 We assume that the substitution of a letter for itself, eutpstitutiont for t, has zero cost.
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(3:9)

. intention
delete i

substituten by e _ ntention
substitute t by x _ etention
insertu_»exentlcsn

substitute n by ¢ exenution

e xecu ion

Figure 3.24  Operation list transforminmtentionto executionafter Kruskal 1983)

operation-list, then the optimal sequence must also ircthd optimal path fronn-
tentionto exention Why? If there were a shorter path frantentionto exentionthen
we could use it instead, resulting in a shorter overall patitd the optimal sequence
wouldn'’t be optimal, thus leading to a contradiction.

Dynamic programming algorithms for sequence comparisorkwey creating a
distance matrix with one column for each symbol in the tasgefuence and one row
for each symbol in the source sequence (i.e., target alangdttom, source along the
side). For minimum edit distance, this matrix is thait-distancematrix. Each cell
edit-distancéi,j] contains the distance between the firsharacters of the target and
the firstj characters of the source. Each cell can be computed as aediamgtion of
the surrounding cells; thus starting from the beginnindnefratrix it is possible to fill
in every entry. The value in each cell is computed by takirggrttinimum of the three
possible paths through the matrix which arrive there:

distancéi — 1, j] + ins-cosftarget_,)
distancéi, j| = min{ distancé — 1, j — 1] + subst-cogsourcg_1,target_,)
distancéi, j — 1] + del-costsourcg_1))

The algorithm itself is summarized in Fig. 3.25, while Fig@ shows the results
of applying the algorithm to the distance betwémentionandexecutiorassuming the
version of Levenshtein distance in which the insertionsdgldtions each have a cost
of 1 (ins-cost() = del-cost() = 1), and substitutions have a cost of 2 (except substitutio
of identical letters has zero cost).

Knowing the minimum edit distance is useful for algorithrike Ifinding potential
spelling error corrections. But the edit distance algaonife important in another way;
with a small change, it can also provide the minimum agnment between two
strings. Aligning two strings is useful throughout speent language processing. In
speech recognition, minimum edit distance alignment islusecompute word error
rate in speech recognition (Ch. 9). Alignment plays a rolenachine translation, in
which sentences in a parallel corpus (a corpus with a texténanguages) need to be
matched up to each other.

In order to extend the edit distance algorithm to producdignment, we can start
by visualizing an alignment as a path through the edit destamatrix. Fig. 3.27 shows
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function MIN-EDIT-DISTANCHtarget, sourc returns min-distance

n«+— LENGTH(targe?
m+«— LENGTH(source
Create a distance matriistance[n+1,m+1]
Initialize the zeroth row and column to be the distance frbmeémpty string
distancg0,0] =0
for each column from 1to ndo
distancei,0] distancgi-1,0] +ins-cosftarge{i])
for each rowj from 1to mdo
distancel[0,j}— distanc40,j-1] + del-cosfsourcégj])
for each column from 1to ndo
for each rowj from 1to mdo
distancel[i, j]<— MIN( distanc¢i—1,j] + ins-cosftarget_1),
distanc¢i—1,j—1] + subst-cogsourcg_1, target_1),
distancéi,j—1] + del-cosfsourcg_1))
return distancgn,m]

Figure 3.25 The minimum edit distance algorithm, an example of the abislynamic
programming algorithms. The various costs can either be figg. Vx, ins-costx) = 1),
or can be specific to the letter (to model the fact that sonterleare more likely to be
inserted than others). We assume that there is no cost fetitiimg a letter for itself (i.e.
subst-cogix, x) = 0).

n[9 8] 9] 10] 11| 12| 11 0] 9] 8
o |8 7] 8| 9 10| 11 10 9] 8] 9
i 7] 6| 7| 8| 9] 10 9 8| 9] 10
t [ 6] 5] 6| 7] 8| 9 8 9] 10| 11
n |5 4] 5] 6] 7| 8 9 10| 11| 10
e |4 3| 4| 5] 6] 7 8 9] 10| 9
t |3 4] 5| 6] 7| 8 7 8] 9] 8
n 2 3] 4] 5] 6| 7 8 7] 8] 7
i 2| 3| 4| 5] 6 7 6| 7] 8
#0 1] 2] 3| 4] 5 6 7] 8] 9

| # e[ x[ e c] wu tf i[] of n

Figure 3.26 Computation of minimum edit distance betwdeatentionand execution
via algorithm of Fig. 3.25, using Levenshtein distance witst of 1 for insertions or
deletions, 2 for substitutions. In italics are the initialwes representing the distance from

the empty string.

this path with the boldfaced cell. Each boldfaced cell repn¢s an alignment of a pair
of letters in the two strings. If two boldfaced cells occuttlre same row, there will
be an insertion in going from the source to the target; twaltagled cells in the same
column indicates a deletion.

Fig. 3.27 also shows the intuition of how to compute thisraligent path. The com-
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BACKTRACE

putation proceeds in two steps. In the first step, we augrhemhtnimum edit distance
algorithm to store backpointers in each cell. The backgoifiom a cell points to the
previous cell (or cells) that were extended from in entetimg current cell. We've
shown a schematic of these backpointers in Fig. 3.27, aften#éar diagram in Gus-
field (1997). Some cells have multiple backpointers, beedlug minimum extension
could have come from multiple previous cells. In the secdaf,ave perform dack-
trace. In a backtrace, we start from the last cell (at the final rod aolumn), and
follow the pointers back through the dynamic programmingdrima Each complete
path between the final cell and the initial cell is a minimurstaince alignment. Exer-
cise 3.12 asks you to modify the minimum edit distance atgorito store the pointers
and compute the backtrace to output an alignment.

n|l 9 18] 19| /10| /— 11| /—| 12 111 110 19| 8
ol 8 17| /=18 /=19, 10| 11 110 19 /8 <9
il 7 16|, 17| ,-18| 19|10 19 /8 ~9| ~10
t|| 6 15| 16| 7| /18] <19 /8 -9 ~ 10| — 11
nj 5 V4| /15| /16| T /18] /19| /110] /11| /110
el 4] 3] —4| -5 —6 7| 18] /19|10 |9
t| 3| 14| 15| /16| 17| /18] 7| 18] 19 18
nj| 2| /13| /14| /5] /16| /17| /<8 V7| 18] /7
| 1) 12| /13| /18] /<lB| /16| 1T /6 7| -8
#{ O 1 2 3 4 5 6 7 8 9
# e X e c u t i o] n
Figure 3.27 When entering a value in each cell, we mark which of the 3 rimghg
cells we came from with up to three arrows. After the tableuls\iie compute aralign-
ment (minimum edit path) via &acktrace, starting at theB in the upper right corner
and following the arrows. The sequence of boldfaced dismmepresents one possible
minimum cost alignment between the two strings.

There are various publicly available packages to computedefance, including
UNIX diff , and the NISTsclite  program (NIST, 2005); Minimum edit distance
can also be augmented in various ways. The Viterbi algoritttmexample, is an
extension of minimum edit distance which uses probalilidéfinitions of the oper-
ations. In this case instead of computing the “minimum editashce” between two
strings, we are interested in the “maximum probability mtrgent” of one string with
another. The Viterbi algorithm is crucial in probabilistasks like speech recognition
and part-of-speech tagging.

3.12 HUMAN MORPHOLOGICALPROCESSING

In this section we briefly survey psycholinguistic studieshmw multi-morphemic
words are represented in the minds of speakers of Englishex@mple, consider the
word walk and its inflected formsvalks andwalked Are all three in the human lexi-
con? Or merelwalk along with-edand-s? How about the worlappyand its derived
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FULL LISTING

MINIMUM
REDUNDANCY

PRIMED

formshappilyandhappines® We can imagine two ends of a theoretical spectrum of
representations. THell listing hypothesis proposes that all words of a language are
listed in the mental lexicon without any internal morphadtag structure. On this view,
morphological structure is simply an epiphenomenon yaalf, walks walked happy
andhappilyare all separately listed in the lexicon. This hypothesteidainly unten-
able for morphologically complex languages like Turkisheminimum redundancy
hypothesis suggests that only the constituent morphereespresented in the lexicon,
and when processingalks (whether for reading, listening, or talking) we must asces
both morphemessalk and-s) and combine them.

Some of the earliest evidence that the human lexicon repteatleast some mor-
phological structure comes frospeech errors also calledslips of the tongue In
conversational speech, speakers often mix up the ordeeafidinds or sounds:

if you breakit it'll drop

In slips of the tongue collected by Fromkin and Ratner (138®) Garrett (1975),
inflectional and derivational affixes can appear separéteiy their stems. The ability
of these affixes to be produced separately from their stergesig that the mental
lexicon contains some representation of morphologicatsire.

it's not only us who have screw loos@sr “screws loose”)
wordsof rule formation (for “rules of word formation”)
easy enoughlyfor “easily enough”)

More recent experimental evidence suggests that neitleefuthlisting nor the
minimum redundancy hypotheses may be completely trueeddstit's possible that
some but not all morphological relationships are mentaresented. Stanners et al.
(1979), for example, found that some derived formappinesshappily) seem to be
stored separately from their stetmappy), but that regularly inflected form@éuring)
are not distinct in the lexicon from their stenpo(r). They did this by using a repe-
tition priming experiment. In short, repetition primind&s advantage of the fact that
a word is recognized faster if it has been seen before (if firisied). They found
thatlifting primedlift, andburnedprimedburn, but for exampleselectivedidn’t prime
select Marslen-Wilson et al. (1994) found thapokerderived words can prime their
stems, but only if the meaning of the derived form is closehated to the stem. For
examplegovernmenprimesgovern butdepartmentioes not prima&lepart Marslen-
Wilson et al. (1994) represent a model compatible with tbein findings as follows:

-al -ure -S

department

Figure 3.28 Marslen-Wilson et al. (1994) result: Derived words are ¢idko their
stems only if semantically related.

-ing

In summary, these early results suggest that (at leastuptivé morphology like
inflection does play an online role in the human lexicon. Mareent studies have
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shown effects of non-inflectional morphological structomevord reading time as well,

MORFHOLOGICAL  such as thenorphological family size The morphological family size of a word is the
number of other multimorphemic words and compounds in whighpears; the family
for fear, for example, includetearful, fearfully, fearfulness, fearless, fearlessbart
lessness, fearsomemdgodfearing(according to the CELEX database), for a total size
of 9. Baayen and colleagues (Baayen et al., 1997; De Jong €08R; Moscoso del
Prado Martin et al., 2004) have shown that words with a lang@rphological family
size are recognized faster. Recent work has further shostmibrd recognition speed
is effected by the total amount offormation (or entropy) contained by the morpho-
logical paradigm (Moscoso del Prado Martin et al., 2004jrapy will be introduced
in the next chapter.

3.13 SUMMARY

This chapter introducethorphology, the arena of language processing dealing with
the subparts of words, and tfieite-state transducer, the computational device that is
important for morphology but will also play a role in many ethiasks in later chapters.
We also introducedtemming, word and sentence tokenizationandspelling error
detection
Here’s a summary of the main points we covered about thess:ide
e Morphological parsing is the process of finding the constituenorphemesin
aword (e.g.cat +N +PL for catg.
e English mainly useprefixes and suffixesto expressnflectional and deriva-
tional morphology.
e Englishinflectional morphology is relatively simple and includes person and
number agreementd) and tense markings€dand-ing).
e Englishderivational morphology is more complex and includes suffixes like
-ation, -ness-ableas well as prefixes likeo-andre-.
e Many constraints on the Englishorphotactics(allowable morpheme sequences)
can be represented by finite automata.
o Finite-state transducersare an extension of finite-state automata that can gen-
erate output symbols.
e Important operations for FSTs includemposition, projection, andintersec-
tion.
o Finite-state morphology andtwo-level morphologyare applications of finite-
state transducers to morphological representation arsihggar
e Spelling rulescan be implemented as transducers.
e There are automatic transducer-compilers that can proalti@asducer for any
simple rewrite rule.
e The lexicon and spelling rules can be combineadbynposingandintersecting
various transducers.

e ThePorter algorithm is a simple and efficient way to dsiemming, stripping
off affixes. It is not as accurate as a transducer model tlthides a lexicon,
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but may be preferable for applications likdormation retrieval in which exact
morphological structure is not needed.

e Word tokenization can be done by simple regular expressions substitutions or
by transducers.

e Spelling error detectionis normally done by finding words which are not in a
dictionary; an FST dictionary can be useful for this.

e The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edtathce can be
computed bydynamic programming, which also results in aalignment of the
two strings.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-stamsducers to finite-state au-
tomata, the two models grew out of somewhat different tiaigt Ch. 2 described how
the finite automaton grew out of Turing’s (1936) model of aitjonic computation,
and McCulloch and Pitts finite-state-like models of the waurThe influence of the
Turing machine on the transducer was somewhat more indiredtman (1954) pro-
posed what was essentially a state-transition table to htbeédehavior of sequential
circuits, based on the work of Shannon (1938) on an algebraitel of relay circuits.
Based on Turing and Shannon’s work, and unaware of Huffmaork, Moore (1956)
introduced the ternfinite automaton for a machine with a finite number of states
with an alphabet of input symbols and an alphabet of outpob®fs. Mealy (1955)
extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper, and the extanisy Mealy differed
in an important way. In a Mealy machine, the input/output bgia are associated
with the transitions between states. In a Moore machinejrthet/output symbols
are associated with the state. The two types of transduceeqaivalent; any Moore
machine can be converted into an equivalent Mealy machidevee versa. Further
early work on finite-state transducers, sequential travesdiiand so on, was conducted
by Salomaa (1973), Schutzenberger (1977).

Early algorithms for morphological parsing used eitheftb#om-up or top-down
methods that we will discuss when we turn to parsing in Ch.Ar8early bottom-up
affix-stripping approach as Packard’s (1973) parser for ancient Greek vitacd
tively stripped prefixes and suffixes off the input word, nmakhote of them, and then
looked up the remainder in a lexicon. It returned any root thes compatible with
the stripped-off affixes. AMPLE (A Morphological Parser fdnguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988; Hankamer and BEg%1) is another
early bottom-up morphological parser. Hankamer’s (19&8)iks a an early top-down
generate-and-tegir analysis-by-synthesimorphological parser for Turkish which is
guided by a finite-state representation of Turkish morpreniEhe program begins
with a morpheme that might match the left edge of the word,apqlies every possi-
ble phonological rule to it, checking each result againstitiput. If one of the outputs
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succeeds, the program then follows the finite-state moguaitios to the next morpheme
and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transdiuis really based on
Johnson’s (1972) early idea that phonological rules (to iseussed in Ch. 7) have
finite-state properties. Johnson'’s insight unfortunatidlynot attract the attention of
the community, and was independently discovered by Ronafuldt and Martin Kay,
first in an unpublished talk (Kaplan and Kay, 1981) and theallfnin print (Kaplan
and Kay, 1994) (see pad@® for a discussion of multiple independent discoveries).
Kaplan and Kay’s work was followed up and most fully worked by Koskenniemi
(1983), who described finite-state morphological rulesFimmish. Karttunen (1983)
built a program called KIMMO based on Koskenniemi’'s modefmtworth (1990)
gives many details of two-level morphology and its applmatto English. Besides
Koskenniemi’'s work on Finnish and that of Antworth (1990)Bmglish, two-level or
other finite-state models of morphology have been workedf@muimany languages,
such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996rtdB et al. (1987)
bring up some computational complexity problems with teeel models, which are
responded to by Koskenniemi and Church (1988). Readersfuither interest in
finite-state morphology should turn to Beesley and Karttu(2003). Readers with
further interest in computational models of Arabic and Semiorphology should see
Smrz (1998), Kiraz (2001), Habash et al. (2005).

A number of practical implementations of sentence segnientaere available by
the 1990s. Summaries of sentence segmentation historyaaiwadis algorithms can be
found in Palmer (2000), Grefenstette (1999), and Mikhe©08). Word segmentation
has been studied especially in Japanese and Chinese. Whitestx-match algorithm
we describe is very commonly used as a baseline, or when desbopaccurate al-
gorithm is required, more recent algorithms rely on stottbasd machine learning
algorithms; see for example such algorithms as Sproat €1996), Xue and Shen
(2003), and Tseng et al. (2005).

Gusfield (1997) is an excellent book covering everything gould want to know
about string distance, minimum edit distance, and relatedsa

Students interested in further details of the fundamenghematics of automata
theory should see Hopcroft and Ullman (1979) or Lewis andaBampitriou (1988).
Roche and Schabes (1997) is the definitive mathematicaldattion to finite-state
transducers for language applications, and together withr1997) and Mohri (2000)
give many useful algorithms such as those for transducemrigation and deter-
minization.

The CELEX dictionary is an extremely useful database forphotogical analysis,
containing full morphological parses of a large lexicon afjiish, German, and Dutch
(Baayen et al., 1995).

Roark and Sproat (2007) is a general introduction to contjautal issues in mor-
phology and syntax. Sproat (1993) is an older general ington to computational
morphology.
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EXERCISES

3.1 Give examples of each of the noun and verb classes in FigaBdbfind some
exceptions to the rules.

3.2 Extend the transducer in Fig. 3.17 to deal wsthandch.
3.3 Write a transducer(s) for the K insertion spelling rule irgksh.
3.4 Write a transducer(s) for the consonant doubling spellirtg in English.

3.5 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1878 method com-
monly used in libraries and older Census records for reptegepeople’s names. It
has the advantage that versions of the names that are gligistspelled or otherwise
modified (common, for example, in hand-written census @gowill still have the
same representation as correctly-spelled names. (eratsky Jarofsky, Jarovsky, and
Jarovski all map to J612).

a. Keep the first letter of the name, and drop all occurrencespfinitial a, e, h, i,
01 uy Wy y
b. Replace the remaining letters with the following numbers:

b,fp,v—1

¢ 0jkaq,s, x,z>2
dt—3

| —4

m,n—>5

r—6

c. Replace any sequences of identical numbers , only if theyel&om two or
more letters that weradjacentin the original name, with a single number (i.e.,
666— 6).

d. Convertto the fornietter Digit Digit Digit by dropping digits past
the third (if necessary) or padding with trailing zeros @cessary).

The exercise: write a FST to implement the Soundex algorithm
3.6 Implement one of the steps of the Porter Stemmer as a tramsduc

3.7 Write the algorithm for parsing a finite-state transducsing the pseudo-code in-
troduced in Chapter 2. You should do this by modifying theathm ND-RECOGNIZE
in Fig. ??in Chapter 2.

3.8 Write a program that takes a word and, using an on-line diatig computes
possible anagrams of the word, each of which is a legal word.
3.9 InFig. 3.17, why is there a, s, xarc fromgs to g;?

3.10 Computing minimum edit distances by hand, figure out whedniee is closer
to brief or todivers and what the edit distance is. You may use any versiatisthnce
that you like.
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3.11 Now implementa minimum edit distance algorithm and use yamd-computed
results to check your code.

3.12 Augment the minimum edit distance algorithm to output agratient; you will
need to store pointers and add a stage to compute the baxktrac
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