Data Structures & Algorithms

Lecture 18

April 10

Benjamin Carle

Vassar College

Announcements

The Organization of JMusic Objects
Thought Experiment

- How are they doing that?
- How can there be any number of Notes in a Phrase, Phrases in a Part, and Parts in a Score?
 - (Hint: Not Arrays.)

How do we explore composition?

- We want to quickly and easily throw together notes in different groupings and see how they sound.
- The current jMusic structure models music.
 - Let’s try to create a structure that models thinking about music as bunches of riffs/SongElements that we want to combine in different ways.

Version 1: Notes in an array

- We can store our notes in an array.
- Traverse the array to gather the notes up into a Phrase, then use View to notate the Phrase.

Version 1: Note Array
Using an array to structure Notes

```java
Note [] someNotes = new Note[100];
for (int i = 0; i < 100; i++)
    someNotes[i] =
        new Note((int) (128 * Math.random()), 0.25);
// Now, traverse the array and gather them up.
Phrase myphrase = new Phrase();
for (int i = 0; i < 100; i++)
    myphrase.addNote(someNotes[i]);
View.notate(myphrase);
```

Version 1: Note Array

```java
public class NoteArray
{
    //----/----/ Fields //----/----/
    private ArrayList<Note> notes;

    //----/----/ Constructors //----/----/
    public NoteArray()
    {
        notes = new ArrayList<Note>();
    }

    //----/----/ Methods //----/----/
    public void addNote(Note n) {
        notes.add(n);
    }
    public Phrase getPhrase()
    {
        Phrase phr = new Phrase();
        for (int i = 0; i < notes.size(); i++)
            phr.addNote(notes.get(i));
        return phr;
    }

    public static void main(String [] args)
    {
        NoteArray na = new NoteArray();
        na.addNote(new Note(JMC.D2, JMC.ENT));
        na.addNote(new Note(JMC.FS2, JMC.ENT));
        na.addNote(new Note(JMC.A2, JMC.ENT));
        na.addNote(new Note(JMC.A1, JMC.ENT));
        na.addNote(new Note(JMC.CS2, JMC.ENT));
        na.addNote(new Note(JMC.E2, JMC.ENT));
        na.addNote(new Note(JMC.G1, JMC.ENT));
        na.addNote(new Note(JMC.B1, JMC.ENT));
        na.addNote(new Note(JMC.D2, JMC.ENT));
        na.addNote(new Note(JMC.A1, JMC.ENT));
        na.addNote(new Note(JMC.CS2, JMC.ENT));
        na.addNote(new Note(JMC.E2, JMC.ENT));
        Phrase phr1 = na.getPhrase();
        Part part1 = new Part("Bass", JMC.PBASS, phr1);
        Score score = new Score("Buster", 100.0, part1);
        View.notate(score);
    }
```

```java```
**Version 1: Repeat**

```java
public void repeat(int n)
{
 int size = notes.size();
 for(; n > 0; n--)
 for(int i = 0; i < size; i++)
 notes.add(notes.get(i));
}
```

**Version 1: doubleNote**

```java
public void doubleNote(int index)
{
 Note orig = notes.get(index);
 Note half = new Note(orig.getPitch(),
 orig.getRhythmValue() * 0.5);
 notes.set(index, half);
 notes.add(index + 1, half);
}
```

**Critique of Version 1**

- So where’s the music?
  - We don’t think about notes as just one long strand.
  - Where are the phrases/riffs/elements?
    - We just have one long line of notes.
  - How do we explore patterns like this?
    - `insertAfter` and `delete` are just as hard here as in sampled sounds!