Computer Science

Professor Tom Ellman
Lecture 16
Telephone Book Problem

• Operations:
 – Insert a name and number into the book.
 – Delete a (name, number) entry from the book.
 – Look up the number associated with a given name.

• Issues:
 – What type of data structure(s) should be used to keep track of the names and numbers?
 – How can we make the operations listed above as fast as possible?
Set of Numbers Problem

• Operations:
 – Insert a number into the set.
 – Delete a number from the set.
 – Check whether a number is a member of the set.

• Issues:
 – What type of data structure(s) should be used to keep track of the numbers in the set?
 – How can we make the operations listed above as fast as possible?
A Straw Man

- Represent the set as a linked list.
- Insert new objects into position on the list to maintain an ordering relation.
- Avoid inserting duplicate items.
- Delete an object by searching the list, locating the first node holding the object and removing the node from the list.
- Look up an object by searching the list until finding a node holding it or reaching the end of the list.
public interface SortedSet<T extends Comparable<T>> {
 public boolean isEmpty();
 public T insert(T item);
 public T delete(T item);
 public T member(T item);
 public Queue<T> elements();
}

Our Sorted List implementation will support this interface.
public class SortedListSL<T extends Comparable<T>>
 implements SortedSet<T> {

 private ListElementSL<T> head;

 public SortedListSL() { this.head = null; }

 public boolean isEmpty() { return head==null; }

 // ... Omitted ...
}
Our (recursive) `insert` method keeps the list in order according to the `compareTo` method. It also avoids storing duplicate elements.
public T delete(T item) {
 head = deleteHelper(item, head);
 return item;
}

private ListElementSL<T> deleteHelper(T item, ListElementSL<T> head) {
 if (head==null) return null;
 else {
 int cmp = item.compareTo(head.data());
 if (cmp<0) return head;
 else if (cmp==0) return head.next();
 else {
 head.setNext(deleteHelper(item, head.next()));
 return head;
 }
 }
}

Our (recursive) **delete** method takes advantage of the fact that the list is in order.
public T member(T item) {
 return memberHelper(item, head);
}

private T memberHelper(T item, ListElementSL<T> head) {
 if (head==null) return null;
 else {
 int cmp = item.compareTo(head.data());
 if (cmp<0) return null;
 else if (cmp==0) return head.data();
 else return memberHelper(item, head.next());
 }
}

Our (recursive) member method also takes advantage of the fact that the list is in order.
public Queue<T> elements() {
 Queue<T> theQueue = new QueueListSL<T>();
 ListElementSL<T> current = this.head;
 while (current!=null) {
 theQueue.enQueue(current.data);
 current = current.next();
 }
 return theQueue;
}

The **elements** method returns a queue implemented as a doubly linked list.
Evaluation of this Approach

• It’s easy to implement.

• The procedures run slowly if the list is long:
 – Suppose the list has length N.
 – Each operation takes about N/2 steps on average.
 – We say each operation takes “O(N)” time.
Binary Search Tree

- Store the objects in a tree structure.
- The root of the tree holds a data object.
- The left subtree holds numbers “less” than data.
- The right subtree holds numbers “greater” than data.
- Each subtree stores objects in the same way as the whole tree.
Structure of a Binary Search Tree

Root

Objects less than \textbf{data}

Objects greater than \textbf{data}
Example: \{0, 2, 3, 5, 7, 8, 9\}
public interface SortedSet<T extends Comparable> {
 public boolean isEmpty();
 public T insert(T item);
 public T delete(T item);
 public T member(T item);
 public Queue<T> elements();
}

Our Binary Search Tree implementation will also support this interface.
public interface PriorityQueue<D extends Comparable<D>> {
 public boolean isEmpty();
 public D insert(D item);
 public D delete();
 public D min();
}

Our Binary Search Tree implementation will also support this interface.
Implementation of Binary Search Trees

• **Class BSTree<T>:**
 – Represents an entire binary search tree.
 – Holds a reference (root) to a BSTreeNode<T> object.
 – Most of its methods call corresponding methods of BSTreeNode class.

• **Class BSTreeNode<T>:**
 – Represents a single node of a binary search tree.
 – Also represents a subtree of a binary search tree.
 – Holds references to left (BSTreeNode<T>), right (BSTreeNode<T>) and data (T).
Implementation of Binary Search Trees

BSTree

root

BSTreeNode

data

left right

BSTreeNode

data

left right

BSTreeNode

data

left right
package bstreetest;

public class BSTree<T extends Comparable<T>> implements PriorityQueue<T>, SortedSet<T> {

 private BSTreeNode<T> root; ← A private instance variable root holds a reference to the root of the tree.

 public BSTree() {
 root = null; ← An empty BSTree has its root equal to null.
 }

 public boolean isEmpty() {
 return root == null;
 }

 // ... Omitted ...
}
The **BSTree** `insert` method creates a new **root** node if the tree is empty. Otherwise, it passes the `insert` call to the **root** node. In either case it returns its argument.
public T delete(T d) {
 if (!isEmpty()) {
 root = root.delete(d);
 }
 return d;
}

The **BSTree** delete method does nothing if the tree is empty. Otherwise, it passes the delete call to the root node. In either case it returns its argument.
public T member(T d) {
 if (isEmpty()) {
 return null;
 }
 return root.member(d);
}

The `BSTree member` method returns `null` if the tree is empty. Otherwise, it passes the `member` call to the `root` node. This will return the object found in the tree, or else `null` if no object was found.
public T min() {
 return root.min();
}

public T deleteMin() {
 T temp = root.min();
 root = root.deleteMin();
 return temp;
}

The **BSTree** `min` method just passes the call to the root node. This method may not be invoked on an empty **BSTree**.

The **BSTree** `deleteMin` method first gets the `min` value from the root node. It then passes the `deleteMin` call to the root node. Finally it returns the `min` value acquired from the root node. This method may not be invoked on an empty **BSTree**.
```
public T max() {
    return root.max();
}

public T deleteMax() {
    T temp = root.max();
    root = root.deleteMax();
    return temp;
}
```

The **BSTree max** method just passes the call to the root node. This method may not be invoked on an empty **BSTree**.

```
public T deleteMax() {
    T temp = root.max();
    root = root.deleteMax();
    return temp;
}
```

The **BSTree deleteMax** method first gets the **max** value from the root node. It then passes the **deleteMax** call to the root node. Finally it returns the **max** value acquired from the root node. This method may not be invoked on an empty **BSTree**.
To implement the `PriorityQueue` interface, we need a `delete` method. It just calls `deleteMin`.
public Queue<T> elements() {
 Queue<T> elementQueue = new QueueListSL<T>();
 if (root!=null) {
 root.enQueueElements(elementQueue);
 }
 return elementQueue;
}

To implement the SortedList interface, we need an elements method that returns an queue. If the root is null, we just return an empty queue. Otherwise, call a the enQueueElements method of the BSTreeNode class.
A **BSTreeNode** has private instance variables to hold the stored **data** and the **left** and **right** subtrees.

The **BSTreeNode** constructor takes a **Comparable** object **d** and stores it in the **data** variable. The **left** and **right** subtrees are initially **null**.
Finding the Smallest Object in BST

• If the left subtree of BST is empty, then return the root data of BST.

• Otherwise, return the smallest number in the left subtree of BST.
Finding the Largest Object in BST

• If the right subtree of BST is empty, then return the root data of BST.

• Otherwise, return the largest number in the right subtree of BST.
public T min() {
 if (left == null) {
 return data;
 } else {
 return left.min();
 }
}

public T max() {
 if (right == null) {
 return data;
 } else {
 return right.max();
 }
}
Is an object d a member of BST?

- If the root data of BST equals d, then return true.

- If $d < \text{data}$ then if left subtree is empty return false, otherwise look for d in the left subtree.

- If $d > \text{data}$ then if right subtree is empty return false, otherwise look for d in the right subtree.
public T member(T d) {
 int cmp = d.compareTo(data);
 if (cmp == 0) {
 return data;
 }
 if (cmp < 0) {
 if (left == null) {
 return null;
 } else {
 return left.member(d);
 }
 } else {
 if (right == null) {
 return null;
 } else {
 return right.member(d);
 }
 }
}

Why return data or null, rather than true or false boolean values?

Hint: If d.compareTo(data) is zero, d.equals(data) may be true or false.
Inserting the object \(d \) into BST

- If the root data of BST is equivalent to \(d \), then replace \(d \) with data.
- If \(d < \text{data} \) then insert \(d \) into the left subtree.
- If \(d > \text{data} \) then insert \(d \) into the right subtree.
public void insert(T d) {
 int cmp = d.compareTo(data);
 if (cmp==0) {
 data = d;
 return;
 }
 if (cmp < 0)
 if (left!=null) left.insert(d);
 else left = new BSTreeNode<T>(d);
 else
 if (right!=null) right.insert(d);
 else right = new BSTreeNode<T>(d);
}

How could we modify this definition to allow duplicates, i.e., two more values \(d_1\) and \(d_2\) where \(d_1\text{.compareTo}(d_2)\) is zero?
Deleting the object d from BST

- If the root data of BST is equivalent to d, then call a special procedure to delete the root of BST.
- If $d < \text{data}$ then delete d from the left subtree:
- If $d > \text{data}$ then delete d from the right subtree.
public BSTreeNode<T> delete(T d) {
 int cmp = d.compareTo(data);
 if (cmp == 0) {
 return deleteRoot();
 } else {
 if (cmp < 0) {
 if (left != null) {
 left = left.delete(d);
 }
 } else {
 if (right != null) {
 right = right.delete(d);
 }
 }
 }

 return this;
}
Deleting the root of BST

• Version 1:
 • If the left subtree of BST is not empty, then delete the largest object e in the left subtree and store e in the root of BST.
 • Otherwise, return the right subtree of BST.

• Version 2:
 • If the right subtree of BST is not empty, then delete the smallest object e in the right subtree and store e in the root of BST.
 • Otherwise, return the left subtree of BST.
Replacing Root with Maximum of Left Subtree
private BSTreeNode<T> deleteRoot() {
 if (left != null) {
 data = left.max();
 left = left.deleteMax();
 return this;
 } else {
 return right;
 }
}
Replacing Root with Minimum of Right Subtree
private BSTreeNode<T> deleteRoot() {
 if (right != null) {
 data = right.min();
 left = right.deleteMin();
 return this;
 } else {
 return left;
 }
}
Deleting the Smallest Object in BST

• If the **left** subtree of BST is empty, then the root **data** is smallest, so just return the **right** subtree of BST.

• Otherwise, delete the minimum from the **left** subtree, and return **this** subtree.
public BSTreeNode<T> deleteMin() {
 if (left == null) {
 return right;
 } else {
 left = left.deleteMin();
 return this;
 }
}
Deleting the Largest Object in BST

- If the right subtree of BST is empty, then the root data is largest, so just return the left subtree of BST.

- Otherwise, delete the maximum from the right subtree, and return this subtree.
public BSTreeNode<T> deleteMax() {
 if (right == null) {
 return left;
 } else {
 right = right.deleteMax();
 return this;
 }
}
public T value()
{
 return data;
}

public BSTreeNode<T> left()
{
 return left;
}

public BSTreeNode<T> right()
{
 return right;
}
public void enQueueElements(Queue<T> queue) {
 if (left != null) {
 left.enQueueElements(queue);
 }
 queue.enQueue(data);
 if (right != null) {
 right.enQueueElements(queue);
 }
}

The `enQueueElements` method puts all the data in this subtree into the given `queue`, in order, modifying the `queue` as a side effect and returning nothing. This method simply traverses the tree following the `inorder` ordering.
What have we gained?

• The code is more complicated.

• Each operation takes a number of steps that is roughly proportional to the depth of the tree.
Balanced Tree
Unbalanced Tree
Depth of a Balanced Binary Search Tree Containing \(N\) Numbers

\[
N = 1 + 2 + 4 + \ldots + 2^d
\]
\[
N = 2^0 + 2^1 + 2^2 + \ldots + 2^d
\]
\[
N = (2^{d+1}) - 1
\]
\[
N \approx 2^{d+1}
\]
\[
d \approx \log_2 N - 1
\]
Depth of a Unbalanced Binary Search Tree Containing N Numbers

$d = N$
$T = N$

$T = \log_2 N$
Moral of the Story

- If the tree is balanced, each operation will take about \(\log_2 N \) steps.
 - Each operation takes \(O(\log N) \) time.
 - Compared to \(O(N) \) time for the straw man.

- If the tree is not balanced, each operation will take about \(N \) steps.
 - Each operation takes \(O(N) \) time.
 - Compared to \(O(N) \) time for the straw man.

- The BST implementation is as fast as or faster than the straw man implementation.
Balancing a Binary Search Tree

• Let’s keep the tree balanced.
• Store size of subtree in each node.
• Rebalance tree periodically after a number of insert or delete operations.
• How often to rebalance the tree?
• How to rebalance the tree?
• Is there a way to keep it balanced at all times?