Computer Science II

Professor Tom Ellman
Lecture 18
My **Gnarf** program is faster than yours!

No, my **Gnarf** program is faster than yours!
Efficiency of Algorithms

• How can we characterize the efficiency of an algorithm?
 – Sit in front of the computer with a stopwatch?
 – Use an operating system facility for recording elapsed CPU time?

• Unfortunately:
 – Comparisons of algorithms may depend on the type of computer.
 – Comparisons of algorithms may depend on the problem instances chosen for testing.
Asymptotic Complexity Analysis

• An approach to characterizing algorithm efficiency that is independent of any particular machine.
• Describes how the time and space used by an algorithm depends on the size of the problem.
• Makes distinctions among algorithms that hold for sufficiently large problems.
Problem Size Parameters

• The size of a problem can typically be described by an integer, or a small number of integers.
 – Sorting: The length of the array of items to be sorted.
 – Phone Number Lookup: The number of (name, number) pairs in the telephone book.
 – Spell Checking: The number of words (W) in the document and (D) in the dictionary and the maximum length (L) of a word.

• Asymptotic analysis investigates the manner in which the time \(T(n) \) or space \(S(s) \) needed to solve the problem depends on the problem size parameter (n) or parameters.
Big-O Notation

\[T(n) = O(f(n)) \]

If there are constants \(c_1 \) and \(n_1 \) such that:

\[T(n) \leq c_1 \cdot f(n) \quad (\text{For all } n \geq n_1) \]

We say that \(f(n) \) is an “asymptotic upper bound” on \(T(n) \).
$T(n) = O(f(n))$
Big-Ω Notation

\[T(n) = \Omega(f(n)) \]

If there are constants \(c_0 \), and \(n_0 \) such that:

\[c_0 \cdot f(n) \leq T(n) \quad \text{(For all } n \geq n_0) \]

We say that \(f(n) \) is an “asymptotic lower bound” on \(T(n) \).
$T(n) = \Omega(f(n))$

- $T(n)$
- $c_0 \cdot f(n)$
- n_0
- n
Big-Θ Notation

\[T(n) = \Theta(f(n)) \]

if

\[T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n)) \]

We say that \(f(n) \) is an “asymptotic tight bound” on \(T(n) \).
\[T(n) = \Theta(f(n)) \]
Constant Growth Functions

• Consider two algorithms A₁ and A₂, whose running times are T₁(n) and T₂(n).
• Let f(n) = 1. Try to find c₀, n₀, c₁, and n₁.
• Suppose: T₁(n) = 10. (Independent of n)
 1 \cdot f(n) \leq T(n) \leq 20 \cdot f(n), \text{ for all } n \geq 0.
 T₁(n) = \Theta(1).
• Suppose: T₂(n) = 100. (Independent of n)
 1 \cdot f(n) \leq T(n) \leq 200 \cdot f(n), \text{ for all } n \geq 0.
 T₂(n) = \Theta(1).
• Algorithms A₁ and A₂ are asymptotically equivalent.
• They both run in constant time.
Program to Compute Matthew Vassar’s Age

2. Let birthYear = 1792.
4. Print(age).

\[T(n) = \Theta(1) \]
Linear Growth Functions

- Consider two algorithms A_1 and A_2, whose running times are $T_1(n)$ and $T_2(n)$.
- Let $f(n) = n$. Try to find c_0, n_0, c_1, and n_1.
- Suppose: $T_1(n) = 5n + 10$.
 \[f(n) \leq T(n) \leq 6f(n), \text{ for all } n \geq 10. \]
 \[T_1(n) = \Theta(n). \]
- Suppose: $T_2(n) = 20n + 100$.
 \[f(n) \leq T(n) \leq 60f(n), \text{ for all } n \geq 3. \]
 \[T_2(n) = \Theta(n). \]
- Algorithms A_1 and A_2 are asymptotically equivalent.
- Both algorithms run in *linear* time.
Word Count Program

\[T(n) = \Theta(n) \]

Where \(n \) is the number of words in the file.

1. Open a file.
2. Let \(\text{count} = 0 \).
3. While (Not at End of file)
 a. Read another word.
 b. Let \(\text{count} = \text{count} + 1 \).
Examples of Growth Functions

- Consider two algorithms A_1 and A_2, whose running times are $T_1(n)$ and $T_2(n)$.
- Let $f(n) = n^2$. Try to find c_0, c_1 and n_0.
- Suppose: $T_1(n) = 2n^2 + 5n + 10$.
 $1 \cdot f(n) \leq T(n) \leq 3 \cdot f(n)$, for all $n \geq 7$.
 $T_1(n) = \Theta(n^2)$.
- Suppose: $T_2(n) = 20n^2 + 50n + 100$.
 $1 \cdot f(n) \leq T(n) \leq 21 \cdot f(n)$, for all $n \geq 52$.
 $T_2(n) = \Theta(n^2)$.
- Algorithms A_1 and A_2 are asymptotically equivalent.
- Both algorithms run in \textit{quadratic} time.
Program to Draw a Square Checkerboard

\[T(n) = \Theta(n^2) \]

Where \(n \) is number of squares on a side.

1. Set up a GraphicsProgram.

2. For \((r=0; \ r<=n; \ r++) \)

 For \((c=0; \ c<=n; \ c++) \)

 if \(((r+c)\%2==0) \) makeTile\((r,c,RED)\)

 else makeTile\((r,c,BLACK)\).
Program with Nested Loops

\[T(n) = a_d n^d + \ldots + a_2 n^2 + a_1 n^1 + a_0 n^0 = \Theta(n^d) \]

1. Initialize level 0.

2. For \((i_0 = 1 \ldots n)\) do the following:

 a. Initialize level 1.

 b. For \((i_1 = 1 \ldots n)\) do the following:

 i. Initialize level 2.

 ii. For \((i_2 = 1 \ldots n)\) do the following:

 \[
 \ldots \text{Etc} \ldots
 \]

 a. Initialize level d.

 b. For \((i_{d-1} = 1 \ldots n)\) Do a computation Step.
Spell Checking Algorithm

1. Read the dictionary from a file.

2. While more words remain in the document, do the following:
 a. Let word be the next word in the document.
 b. Let found be false.
 c. For (n = 0 … Length of Dictionary – 1) do the following:
 If word equals the nth dictionary entry, let found be true and break the loop.
 d. If found is false, print out word.
Approaching the Spell Checking Algorithm

• What are the appropriate problem size parameters?
 – The number of words in the document? (W)
 – The number of words in the dictionary? (D)
 – The average (maximum? minimum?) word length? (L)

• What operation(s) shall we count?
 – Number of string equality tests? (E)
 – Number of character comparisons? (C)
 – Number of misspelled words printed out? (P)

• What problem problem instances shall we consider? Best case? Worst case? Average case?
Analysis of the Spell Checking Algorithm

• Investigate dependence of C on W, D and L.
• Consider three cases:
 – Best case: Every word is spelled properly, and is found right at the beginning of the dictionary.
 – Worst case: Every word is misspelled, causing a search of the entire dictionary.
 – Average case: All words are spelled correctly and are distributed randomly over the dictionary.
Best Case Analysis

• Number of iterations of outer (while) loop is W.
• Number of iterations of inner (for) loop is 1.
• Number of string equality tests is: $W \cdot 1 = W$.
• Number of character comparisons for each equality test is L.

$$C(W, D, L) = \Theta(W \cdot L)$$
Worst Case Analysis

- Number of iterations of outer (while) loop is W.
- Number of iterations if inner (for) loop is D.
- Number of string equality tests is: $W \cdot D$.
- Number of character comparisons for each equality test is L.

$$C(W,D,L) = \Theta(W \cdot D \cdot L)$$
Average Case Analysis

- Number of iterations of outer (while) loop is W.
- Number of iterations if inner (for) loop is $D/2$.
- Number of string equality tests is: $W \cdot D / 2$.
- Number of character comparisons for each equality test is L.
- Total number of character comparisons is: $(W \cdot D \cdot L)/2$.

$$C(W,D,L) = \Theta(W \cdot D \cdot L)$$
Binary Search

• Algorithm that searches for an element in an array.
• Assumes that are elements are stored in order, e.g., according to the `compareTo` relation.
• Takes advantage of the fact that array elements can be accessed in constant (i.e., \(\Theta(1) \)) time.
Binary Search Algorithm

begin + 0
begin + 1
mid
mid − 1
mid
mid + 1
mid + 1
end
end

Range: begin … mid
(Less than item.)

Range: mid + 1 … end
(Greater than item.)
Recursive Binary Search Algorithm

boolean search(array, begin, end, item)

// Look for item in array from begin up to end-1.
// Return true if found, otherwise return false.

If (begin=end) return false, otherwise, do the following:
1. Let mid = (begin + end)/2.
2. If item equals array[mid] return true.
3. If (item < array[mid])
 then return search(array, begin, mid, item),
 else return search(array, mid+1, end, item).
Iterative Binary Search Algorithm

boolean search(array, begin, end, item)

// Look for item in array from begin up to end-1.

// Return true if found, otherwise return false.

1. Let found = false.

2. While (found is false and begin < end) do the following:
 a. Let mid = (begin + end)/2.
 b. If item equals array[mid] let found = true, otherwise if (item < array[mid]) let end = mid, otherwise let begin = mid+1.

3. Return found.
Worst Case Analysis of Binary Search Algorithm

• Let D be the length of the array.
• Let N be the integer such that: $2^{N-1} < D \leq 2^N$.
 \[N-1 < \log_2 D \leq N. \]
 \[N = \lceil \log_2 D \rceil. \]
 Ceiling(r) = \lceil r \rceil is smallest integer as large as r.
• Assume search item is not found.
• After k comparisons, end-begin $\leq 2^{N-k}$.
• After N comparisons, end-begin $\leq 2^{N-N} = 1$.
• Algorithm terminates one comparison later.
• Worst case requires $N+1 = \lceil \log_2 D \rceil + 1$ comparisons.
• Worst case complexity: $C(D) = \Theta(\log D)$.
Spell Checker with Binary Search

• Best Case: \(C(W, D, L) = \Theta(W \cdot L) \)

• Worst Case: \(C(W, D, L) = \Theta(W \cdot \log(D) \cdot L) \)

• Average Case: \(\Theta(W \cdot \log(D) \cdot L) \)
Fast Algorithms v. Fast Machines

• Consider using the following two machines:
 – M_s takes 1 second to compare two characters.
 – M_f takes 10^{-9} seconds to compare two characters.
• Run spell checker with binary search on M_s.
• Run spell checker with linear search on M_f.
• Assume everything is misspelled. (Worst case.)
• If the dictionary is large enough, the slow machine M_s will beat the fast machine M_f.