Asymptotic Analysis-Ch. 3

- Names for order of growth for classes of algorithms:
 - **constant** \(\Theta(n^0) = \Theta(1) \)
 - **logarithmic** \(\Theta(\log n) \)
 - **linear** \(\Theta(n) \)
 - \(<\text{en log en}>>\) \(\Theta(n \log n) \)
 - **quadratic** \(\Theta(n^2) \)
 - **cubic** \(\Theta(n^3) \)
 - **polynomial** \(\Theta(n^k), k \geq 1 \)
 - **exponential** \(\Theta(a^n), a > 1 \)

Asymptotic analysis valid only in the limit

Example: an algorithm with running time of order \(n^2 \) will "eventually" (i.e., for sufficiently large \(n \)) run slower than one with running time of order \(n \), which in turn will eventually run slower than one with running time of order \(\log n \).

"Big Oh", "Theta", and "Big Omega" are the tools we will use to make these notions precise.

Note: By saying valid "in the limit" or "asymptotically", we mean that the comparison may not hold true for small values of \(n \).

"Big Oh" - Upper Bounding Running Time

Definition: \(f(n) \in O(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that

\[
0 \leq f(n) \leq cg(n) \quad \text{for all } n \geq n_0.
\]

Intuition:
- \(f(n) \in O(g(n)) \) means \(f(n) \) is "of order at most", or "less than or equal to" \(g(n) \) when we ignore small values of \(n \)
- \(f(n) \) is eventually less than or equal to some constant multiple of \(g(n) \) for large enough \(n \)
- For large enough \(n \), some constant multiple of \(g(n) \) is an upper bound for \(f(n) \)

Example: \((\log n)^2 \) is \(O(n) \)

\[
f(n) = (\log n)^2 \quad g(n) = n
\]

\((\log n)^2 \leq n \) for \(c=1 \) and all \(n \geq 16 \), so \((\log n)^2 \) is \(O(n) \)

Basic idea: ignore constant factor differences and lower-order terms

\[
617n^3 + 277n^2 + 720n + 7n \in O(?)
\]

Proving Running Time:

finding values of \(c \) and \(n \)

Consider

\[
f(n) = 5n^3 + 2n^2 + 22n + 6
\]

We claim that

\[
f(n) \in O(n^3)
\]

Let \(c = 6 \) and \(n_0 = 6 \). Then

\[
5n^3 + 2n^2 + 22n + 6 \leq 6n^3
\]

for every \(n \geq 6 \)
Proving Running Time:
finding values of c and n

If
\[f(n) = 5n^3 + 2n^2 + 22n + 6 \]
we have seen that
\[f(n) \in O(n^3) \]
but \(f(n) \) is not in \(O(n^2) \), because no positive value for \(c \) or \(n_0 \) works for large enough \(n \).

Logarithms

- Asymptotics allow us to ignore log base
- Different base changes only constant factor
- When we say \(f(n) \in O(\log n) \), the base is unimportant. Usually, we use \(\log_2 \)

\[\log_b n = \frac{\log_2 n}{\log_2 b} \]

Important Notation

Sometimes you will see notation like this:
\[f(n) \in O(n^2) + O(n) \]

- Each occurrence of big-O symbol has a distinct constant multiple.
- But \(O(n^2) \) term dominates \(O(n) \) term, so the above is equivalent to \(f(n) \in O(n^2) \)

Example: InsertionSort

INPUT:
An array \(A \) of \(n \) numbers
\[a_1, a_2, ..., a_n \]
OUTPUT:
A permutation of input array \(\{a_1', a_2', ..., a_n'\} \) such that \(a_1' \leq a_2' \leq ... \leq a_n' \).

```plaintext
1. for j = 2 to length(A)
2. key = A[j]
3. i = j - 1
4. while i > 0 and A[i] > key
6. i = i - 1
7. A[i+1] = key
```

Time for execution on input array of length \(n \) (if exact count is made of the number of times each line is executed):
- best-case: \(b(n) = 5n - 4 \)
- worst-case: \(w(n) = 3n^2/2 + 11n/2 - 4 \)

Insertion Sort - Time Complexity

Time complexities for insertion sort are:
- best-case: \(b(n) = 5n - 4 \)
- worst-case: \(w(n) = 3n^2/2 + 11n/2 - 4 \)

Questions:
1. is \(b(n) \in O(n) \) ? Yes (\(5n - 4 < 6n \) for all \(n \geq 0 \))
2. is \(w(n) \in O(n) \) ? No (\(3n^2/2 + 11n/2 - 4 \geq 3n \) for all \(n \geq 1 \))
3. is \(w(n) \in O(n^2) \)? Yes (\(3n^2/2 + 11n/2 - 4 < 4n^2 \) for all \(n \geq 0 \))
4. is \(w(n) \in O(n^3) \)? Yes (\(3n^2/2 + 11n/2 - 4 \leq 2n^3 \) for all \(n \geq 2 \))

Plotting run-time graphically

\[f(n) = 2n+6 \]
\[g(n) = 4n \]

\(2n+6 \) is \(O(n) \) since \(2n_0+6 \leq 4n_0 \) for \(n_0 \geq 3 \)

\(n_0 = 3 \) input size
On the other hand... \(n^2 \) is not \(O(n) \) because there are no \(c \) and \(n_0 \) such that:
\[n^2 \leq cn \text{ for all } n \geq n_0 \]

"Big Omega" - Lower Bounding Running Time

Definition: \(f(n) \in \Omega(g(n)) \) if there exist constants \(c > 0 \) and \(n_0 > 0 \) such that
\[f(n) \geq cg(n) \text{ for all } n \geq n_0. \]

Intuition:
- \(f(n) \in \Omega(g(n)) \) means \(f(n) \) is "of order at least" or "greater than or equal to" \(g(n) \) when we ignore small values of \(n \).
- \(f(n) \) is eventually greater than or equal to some constant multiple of \(g(n) \) for large enough \(n \).
- For large enough \(n \), some constant multiple of \(g(n) \) is a lower bound for \(f(n) \).

"Theta" - Tightly Bounding Running Time

Definition: \(f(n) \in \Theta(g(n)) \) if there exist constants \(c_1, c_2 > 0 \) and \(n_0 > 0 \) such that
\[c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0. \]

Intuition:
- \(f(n) \in \Theta(g(n)) \) means \(f(n) \) is "of the same order as", or "equal to" \(g(n) \) when we ignore small values of \(n \).
- \(f(n) \) is eventually trapped between two constant multiples of \(g(n) \) for large enough \(n \).

Showing "Theta" relationships:
- Show both a "Big Oh" and "Big Omega" relationship.

Insertion Sort - Time Complexity

Time complexities for insertion sort are:

- best-case: \(b(n) = 5n - 4 \)
- worst-case: \(w(n) = 3n^2/2 + 11n/2 - 4 \)

Questions:
1. is \(b(n) \in \Theta(n) \)? Yes because \(b(n) = O(n) \) and \(\Omega(n) \)
2. is \(w(n) \in \Theta(n) \)? No because \(w(n) \neq O(n) \)
3. is \(w(n) \in \Theta(n^2) \)? Yes because \(w(n) = O(n^2) \) and \(\Omega(n^2) \)
4. is \(w(n) \in \Theta(n^3) \)? No because \(w(n) \neq \Omega(n^3) \)

Asymptotic Analysis

- Classifying algorithms is generally done in terms of worst-case running time:
 - \(O(f(n)) \): Big Oh--asymptotic upper bound.
 - \(\Omega(f(n)) \): Big Omega--asymptotic lower bound
 - \(\Theta(f(n)) \): Theta--asymptotic tight bound
Useful Properties for Asymptotic Analysis

- If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \) (transitivity)

 Intuition: if \(f(n) \leq c \cdot g(n) \) and \(g(n) \leq c' \cdot h(n) \) then \(f(n) \leq c'' \cdot h(n) \)

- \(f(n) \in O(g(n)) \) iff \(g(n) \in \Omega(f(n)) \) (transpose symmetry)

 Intuition: \(f(n) \leq c \cdot g(n) \) iff \(g(n) \geq c' \cdot f(n) \)

- \(f(n) \in o(g(n)) \) iff \(g(n) \in \Theta(f(n)) \) (symmetry)

 Intuition: \(f(n) \leq c \cdot g(n) \) iff \(g(n) = c' \cdot f(n) \)

Little Oh

"Little Oh" notation is used to denote strict upper bounds. (Big-Oh bounds are not necessarily strict inequalities).

Definition: \(f(n) \in o(g(n)) \) if for every \(c > 0 \), there exists some \(n_0 > 0 \) such that for all \(n \geq n_0 \), \(f(n) < cg(n) \).

Intuition:
- \(f(n) \in o(g(n)) \) means \(f(n) \) is "strictly less than" any constant multiple of \(g(n) \) when we ignore small values of \(n \)
- \(f(n) \) is trapped below any constant multiple of \(g(n) \) for large enough \(n \)

Little Omega

"Little Omega" notation is used to denote strict lower bounds (\(\Omega \) bounds are not necessarily strict inequalities).

Definition: \(f(n) \in \omega(g(n)) \) if for every \(c > 0 \), there exists some \(n_0 > 0 \) such that for all \(n \geq n_0 \), \(f(n) > cg(n) \).

Intuition:
- \(f(n) \in \omega(g(n)) \) means \(f(n) \) is "strictly greater than" any constant multiple of \(g(n) \) when we ignore small values of \(n \)
- \(f(n) \) is trapped above any constant multiple of \(g(n) \) for large enough \(n \)

Handy Asymptotic Facts

- If \(T(n) \) is a polynomial function of degree \(k \), then \(T(n) \in O(n^k) \)
- \(n^b \in O(a^n) \) for any constants \(a > 1, b > 0 \) (Exponentials dominate polynomials). In particular, any exponential function with a base strictly greater than 1 grows faster than any polynomial function.
- \(n! \in o(n^n) \)
- \(n! \in \omega(2^n) \)
- \(\lg(n!) \in \Theta(n \lg n) \) (by Stirling's approximation)
- The base of an exponential function and the degree of a polynomial matter asymptotically, but the base of a logarithm does not.
• Iterated logarithm function \((\log^* n)\):
 - the number of times the \(\log\) function can be iteratively applied before the result is less than or equal to 1
 - "log star of \(n\"
 - Very slow growing, e.g. \(\log^*(2^{65536}) = 5\)

eg:
\[
\begin{align*}
\log^2 &= 1 \\
\log^4 &= 2 \\
\log^6 &= 3 \\
\log^{65536} &= 4
\end{align*}
\]

Basic asymptotic efficiency of code

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Sample algorithm type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>Constant</td>
<td>Algorithm ignores input (i.e., can't even scan input)</td>
</tr>
<tr>
<td>(O(\log n))</td>
<td>Logarithmic</td>
<td>Cuts problem size by constant fraction on each iteration</td>
</tr>
<tr>
<td>(O(n))</td>
<td>Linear</td>
<td>Algorithm scans its input (at least)</td>
</tr>
<tr>
<td>(O(n\log n))</td>
<td>"n-log-n"</td>
<td>Some divide and conquer</td>
</tr>
<tr>
<td>(O(n^n))</td>
<td>Quadratic</td>
<td>Loop inside loop = "nested loop"</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>Cubic</td>
<td>Loop inside nested loop</td>
</tr>
<tr>
<td>(O(2^n))</td>
<td>Exponential</td>
<td>Algorithm generates all subsets of (n)-element set of binary values</td>
</tr>
<tr>
<td>(O(n!))</td>
<td>Factorial</td>
<td>Algorithm generates all permutations of (n)-element set</td>
</tr>
</tbody>
</table>

End of Lecture 3