Complexity Classes (Ch. 34)

The class P: class of problems that can be solved in time that is polynomial in the size of the input, n.

- if input size is n, then the worst-case running time is \(O(n^c) \) for constant c.
- problems in P are considered “tractable” (if not in P, then not tractable)

Some Examples of P and Non-P Problems

SSSP problem in a directed graph, even with negative edge weights, is in P (i.e., \(O(VE) \) time)

Finding the longest simple path between two nodes is Non-P because exhaustive search is “superpolynomial time”.

An Euler tour of a connected, directed graph is a cycle that traverses each edge of \(G \) exactly once, although it may visit a vertex more than once. We can determine whether a graph has an Euler tour and find the edges of such a tour in \(O(E) \) time.

A Hamiltonian cycle of a directed graph is a simple cycle that contains each vertex in \(V \) (each vertex only once). Determining whether a directed graph has a Hamiltonian cycle is a Non-P problem.

Complexity Classes

The class NP: class of problems with solutions that can be verified in time that is polynomial in the size of the input.

- Imagine we are given a “certificate” of a solution (really a potential solution) of a problem. Then the problem is in NP if we can verify that the certificate is a valid solution in polynomial time.
- Relies on the fact that checking a solution is easier than computing it (e.g., check that a list is sorted, rather than sorting it.)

NP-Completeness

The class NP-Complete (NPC): class of the “hardest” problems in NP.

- this class has property that if any NPC problem can be solved in polynomial time (p-time), then all problems in NP could be solved in p-time.
- actual status of NPC problems is unknown
 - No p-time algorithms have been discovered for any NPC problem
 - No one has been able to prove that no p-time algorithm can exist for any of them
- Informally, a problem is in NPC if it is in NP and is as “hard” as any problem in NP.

P, NP, NPC...how are they related?

Any problem in P is also in NP, since if a problem is in P then we can solve it in polynomial-time without even being given a certificate.

So \(P \subseteq NP \).

By definition, \(NPC \subseteq NP \)

P, NP, NPC...how are they related?

Is \(NP \subseteq P ??? \)

- open problem, but intuition says no
- probably the most famous open problem in CS
- seems plausible that the ability to guess and verify a solution in p-time is more powerful than computing a solution from scratch (deterministic p-time)
- so...we think \(P \neq NP \), but no one has proven it one way or the other (despite enormous effort).
P, NP, NPC...why do we care?

So...why do we care to know whether a problem is NP-Complete?

- if it is, then finding a p-time algorithm to solve it is unlikely.
- better to spend your time looking for:
 - an efficient approximation algorithm to find solution close to optimal
 - heuristics that give correct answer with high probability

• The set of “hardest” problems, the NPC problems, includes many problems of importance in science, engineering, operations research, and business, e.g.:
 - traveling salesman
 - bin packing
 - knapsack problem
 - vertex cover (graph coloring)
 - integer linear programming
 - etc...

Decision Problems

Showing problems are either P or NP is easier if we confine our proofs to work with decision problems (problems with yes/no answers)

Example: Shortest paths
- general problem: What is the length of the shortest x to y path?
- decision problem: Is there an x to y path of length ≤ k?

Decision Problems

Rationale for studying decision problems:
- if the decision problem is hard, the general problem is at least as hard
- for many problems, we only need polynomial extra time to solve the general problem
- decision problems are easier to study and results are easier to prove
- all general problems can be rephrased as decision problems

The general Traveling Salesman Problem:

• instance: a set of cities and the distance between each pair of cities (given as a graph).
• goal: Find a tour of minimum cost.

Traveling Salesman Problem (TSP) Decision Version

• instance: a set of cities, the distance between each pair of connected cities (given as a graph), and a bound B.
• question: is there a “tour” that visits every city exactly once, returns to the start, and has total distance ≤ B?
Traveling Salesman Problem (TSP)

Is TSP ∈ NP?
To determine this, we need to show that we can verify a given solution (list of cities) in p-time (i.e., time O(n), where n is the number of cities).

Given an encoding x of a TSP instance and a certificate y,

- check that each city in x is in y exactly once
- check that the start city in y = end city in y
- check that total distance ≤ B

All can be done in O(n) time, so TSP ∈ NP. Call this algorithm D_{TSP}.

Reductions

Let L_1 and L_2 be two decision problems.

There is a p-time reduction function, f, from L_1 to L_2 ($L_1 \leq_p L_2$) if:

- f transforms an input for L_1 into an input for L_2 such that the transformed input is a yes-input for L_2 iff the original input is a yes-input for L_1
- f is computable in p-time (in the size of the input)

P-time Reduction

Suppose we have a problem B that we know how to solve in p-time and we would like to show that a p-time algorithm exists to solve problem A.

We must demonstrate a procedure that transforms any instance α of A into an instance β of B with the following characteristics:

1. The transformation is p-time
2. The answers are the same. That is, the answer for α is “yes” iff the answer for β is also “yes”

P-time Reduction

We use reduction in the opposite way to show that a problem is NPC. We can use a p-time reduction to show that no known p-time algorithm exists for a particular problem B.

Given an instance α of A (an NPC problem) find a p-time function to transform the instance α to an instance β of B (the unknown problem),

1. Convert the input α for A into input β for B
2. Run the decision algorithm for B on the instance β
3. If B has a p-time algorithm, then using the polynomial transformation algorithm, we could convert an instance of A into an instance of B and solve A in p-time, a contradiction to A being NPC.

P-time Reduction Ex: Hamiltonian Circuit Problem to TSP

The Hamiltonian Circuit Decision Problem (HC):

- **Instance**: An undirected graph $G = (V, E)$
- **Question**: Is there a path in G that includes every node exactly once and returns to the start?

The Traveling Salesperson Decision Problem (TSP):

- **Instance**: A set of cities, distances between each city-pair, bound B
- **Question**: Is there a “tour” that visits every city exactly once, returns to the start, and has total distance ≤ B?
P-time Reduction Ex: HC to TSP

Claim: \(HC \leq_p TSP \)

Proof: To prove this, we need to do 2 things:

1. Define the transformation \(f \) mapping inputs for HC into inputs for TSP, and show the mapping can be computed in \(p \)-time in size of HC input.
 - \(f \) must map the input \(G = (V, E) \) for HC into a list of cities, distances, and a bound \(B \) for input to TSP.
2. Prove the transformation is correct.

1. Definition of transformation \(f \) for HC \(\leq_p \) TSP:
 - Given the HC input graph \(G = (V, E) \) with \(n \) nodes:
 - create a set of \(n \) cities labeled with names of nodes in \(V \).
 - set intercity distances \(d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases} \)
 - set bound \(B = n \) (since HC circuit must be of length \(n \)).
 - Note: \(f \) can be computed in \(O(n^2) \) time. Why?

2. Prove the transformation \(f \) for HC \(\leq_p \) TSP is correct

 We will prove this by showing that \(x \in HC \) iff \(f(x) \in TSP \)

2(a) if \(x \in HC \), then \(f(x) \in TSP \)

 Proof of 2(a):
 - \(x \in HC \) means HC input \(G = (V, E) \) has a hamiltonian circuit. Wlog, suppose it is the ordering \((v_1, v_2, ..., v_n, v_1) \).
 - \(v_i, v_{i+1}, ..., v_{i+j}, v_{i+j+1} \) is also a tour of the cities in \(f(x) \), the transformed TSP instance.
 - The distance of the tour \((v_1, v_2, ..., v_n, v_1) \) is \(n \) (\(B \)), since each consecutive pair is connected by an edge and all original edges have wt = 1.
 - Thus, \(f(x) \in TSP \), as required.

2(b) if \(f(x) \in TSP \), then \(x \in HC \)

 Proof of 2(b): if \(f(x) \in TSP \), then \(x \in HC \)
 - \(f(x) \in TSP \) means there exists a tour in TSP input that has a total distance \(\leq n = B \). Wlog, suppose the tour goes through cities \((v_1, v_2, ..., v_n, v_1) \).
 - Since all intercity distances are either 1 or 2 in \(f(x) \), and there are \(n \) intercity "legs" in the tour, each "leg" in tour must have distance 1.
 - So \(G \) must have an edge between each consecutive pair of cities on the tour, and therefore \((v_1, v_2, ..., v_n, v_1) \) must be a hamiltonian circuit in \(G \).
 - Thus, \(x \in HC \), as required. ■

Since \(HC \leq_p TSP \), then
- if there exists a \(p \)-time algorithm for TSP, then there exists a \(p \)-time algorithm for HC.
 (i.e., HC is no harder than TSP)
- If there does not exist a \(p \)-time algorithm for HC, then there does not exist a \(p \)-time algorithm for TSP
 (i.e., TSP is at least as hard as HC)

NP-Completeness

Definition: A decision problem \(L \) is NP-Complete (NPC) if:

1. \(L \in \text{NP} \), and
2. for every \(L' \in \text{NP}, L' \leq_p L \) (i.e., every \(L' \) in NP can be transformed to \(L \) -- so \(L \) is at least as hard as every problem in NP).
Theorem: Suppose L is NPC:

- if there exists a p-time algorithm for L, then there exists a p-time algorithm for every \(L' \in \text{NP} \), i.e., \(P = \text{NP} \)
- if there does not exist a p-time algorithm for L, then there does not exist a p-time algorithm for any \(L' \in \text{NP} \), i.e., \(P \neq \text{NP} \)

Theorem 34.4: If any NPC problem is p-time solvable, Then \(P = \text{NP} \). Equivalently, if any problem in NP is not p-time solvable, then no NPC problem is p-time solvable.

Proof: Suppose that \(L \in P \) and that \(L \in \text{NPC} \). Then, for any \(L' \in \text{NP} \), we know \(L' \leq_p L \) (by defn of class NPC). Thus, we know that \(L' \) is no harder than \(L \), so \(L' \in P \).

The second statement is the contrapositive of the first.

It is a well-known logical equivalence that an implication and its contrapositive are logically equivalent. So both parts of the Theorem are true.