Terminology

- $G = \{V, E\}$
- A graph G consists of two sets
 - A set V of vertices, or nodes
 - A set E of edges
- A subgraph
 - Consists of a subset of a graph’s vertices and a subset of its edges
- Adjacent vertices
 - Two vertices that are joined by an edge

Figure 14-3
Graphs that are a) connected; b) disconnected; and c) complete

Terminology

- A connected graph
 - A graph that has a path between each pair of distinct vertices
- A disconnected graph
 - A graph that has at least one pair of vertices without a path between them
- A complete graph
 - A graph that has an edge between each pair of distinct vertices
Graphs As ADTs

- Graphs can be used as abstract data types
- Two options for defining graphs
 - Vertices contain values
 - Vertices do not contain values
- Operations of the ADT graph
 - Create an empty graph
 - Determine whether a graph is empty
 - Determine the number of vertices in a graph
 - Determine the number of edges in a graph

Implementing Graphs

- Most common implementations of a graph
 - Adjacency matrix
 - Adjacency list
- Adjacency matrix
 - Adjacency matrix for a graph with n vertices numbered 0, 1, ..., n-1
 - An n by n array matrix such that matrix[i][j] is
 - 1 (or true) if there is an edge from vertex i to vertex j
 - 0 (or false) if there is no edge from vertex i to vertex j

Implementing Graphs

- Operations of the ADT graph (Continued)
 - Determine whether an edge exists between two given vertices; for weighted graphs, return weight value
 - Insert a vertex in a graph whose vertices have distinct search keys that differ from the new vertex’s search key
 - Insert an edge between two given vertices in a graph
 - Delete a particular vertex from a graph and any edges between the vertex and other vertices
 - Delete the edge between two given vertices in a graph
 - Retrieve from a graph the vertex that contains a given search key

Figure 14-6

a) A directed graph and b) its adjacency matrix
Graph Traversals

• A graph-traversal algorithm
 – Visits all the vertices that it can reach
 – Visits all vertices of the graph if and only if the graph is connected
 • A connected component
 – The subset of vertices visited during a traversal that begins at a given vertex
 – Can loop indefinitely if a graph contains a loop
 • To prevent this, the algorithm must
 – Mark each vertex during a visit, and
 – Never visit a vertex more than once

Depth-First Search

• Depth-first search (DFS) traversal
 – Proceeds along a path from \(v \) as deeply into the graph as possible before backing up
 – Does not completely specify the order in which it should visit the vertices adjacent to \(v \)
 – A last visited, first explored strategy

Breadth-First Search

• Breadth-first search (BFS) traversal
 – Visits every vertex adjacent to a vertex \(v \) that it can before visiting any other vertex
 – A first visited, first explored strategy
 – An iterative form uses a queue
 – A recursive form is possible, but not simple