CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – T Th 9:00am
Lab – F 10:30am

Lecture Meeting Location: SP 309
Lab Meeting Location: SP 309

Business

• Reading: Please read Ch.2.1 and 2.2.2 in your textbook

• HW1 extended—due Sept. 17
 – Feel free to turn it in today, if you’d like

• HW2-Lookahead out today
 – Full HW2 out soon, due Sept. 24

• Lab0 due by the end of the day, Thursday, Sept. 17
 – Must be submitted online (using the submit145 command)
 – Must be checked off by me or a Coach
Empty Set

• The empty set, written as \emptyset, is the (unique) set containing no elements (Do you see what makes it unique?)
• The empty set can be described many ways, sometimes without it being obvious that it’s the empty set. E.g.,
 – $S = \{n \text{ is prime} | 24 \leq n \leq 28\}$
 – $G = \{\text{Grammy awards won by The Beach Boys, Led Zeppelin, The Who, The Doors, Queen, Guns N’ Roses, or Bob Marley during their careers (before 2014)}\}$ ignoring Lifetime Achievement Grammy awards, etc.
• Exercise: Consider a set S. If $\emptyset \subseteq S$, what do we know about S?
 – Prove your answer; it should contain a proof of an important fact about the empty set!

Disjoint Sets

• Definition: Sets A, B are disjoint if there is no element x s.t. ($x \in A \land x \in B$).
 – That is, sets A and B have no element in common
• This idea can be useful when talking about more than 2 sets where no two have an element in common—they’re all disjoint from each other
• Definition: A collection of sets A_1, A_2, \ldots, A_n is pairwise disjoint iff for any $i, j \leq n$, A_i and A_j are disjoint
Set Difference

- Another set operation: Difference
 - Intuitively, the difference between two things is what’s in the first that’s not in the second
 - For sets A, B, the difference A - B (the book writes it as A \ B) is the set of elements that are in A but not in B. More formally...

- Definition: The difference A - B of sets A and B is defined by:
 \[x \in A - B \text{ iff } x \in A \text{ and } x \notin B \]
 - Also written as A - B = \{ x | x \in A \text{ and } x \notin B \}

- Examples:
 - What’s \{1,2,3,4\} - \{2,4,6,8\}?
 - What’s \{x \mid x \text{ is odd between 0 and 10}\} - \{x \mid x \text{ is prime between 0 and 10}\}

Enumerating Subsets

- If you’re given a set, especially a finite set, you might consider all the subsets of that set
 - If S = \{Phil Collins, Peter Gabriel\}, what are all its subsets? How many are there?
 - If S = \{1,2,3\}, what are all its subsets? How many are there?
 - If S = \{2,4,6,8\}, what are all its subsets? How many are there?

- What do you notice about the relationship between the number of elements in a set and the number of subsets it has?
Power Sets

- Given a set S, the set of subsets of S is called the power set of S, sometimes written $\mathcal{P}(S)$
 - $\mathcal{P}(S) = \{ A \mid A \subseteq S \}$

- Questions:
 - What’s the power set of $\{a,b\}$?
 - Let S be $\{x \mid x$ is between 0 and 10 and x is prime\}.
 What is the size of the power set of S?
 - What is the size of $\mathcal{P}(\emptyset)$? What is $\mathcal{P}(\emptyset)$?

Complement of a Set

- Another set operation: Complement
 - For set A, the complement \overline{A} is the set of elements not in A. More formally…
 - Definition: For set A, its complement \overline{A} (also written as A with a line over it) is defined by:
 - $x \in \overline{A}$ iff $x \notin A$
 - Also written as $\overline{A} = \{ x \mid x \notin A \}$
 - When discussing set complement, it is (explicitly or implicitly) in the context of a universe U of all elements to be considered
 - So, $\overline{A} = U - A$
 - Examples:
 - What’s $\overline{\{1,2,3,4\}}$? [Assume that the complement here is with respect to the natural numbers]
Generalized Union / Intersection

- Consider the \sum summation notation for the sum of $f(i)$ as i goes from 1 to n
 - This is a generalization of the addition operator $+$, extending it to apply to a collection of values
 - Each item in that collection is accessed by index
 * e.g., $f(1)$ for index $i=1$, $f(2)$ for index $i=2$, etc.
- The same thing can be done for union \cup or intersection \cap

- Exercise: Assume S_1, S_2, \ldots, S_n are finite. What is the size of the (generalized) union of all S_i $[i$ from 1 to $n]$?
 - How about if S_1, S_2, \ldots, S_n are finite and pairwise disjoint?

Exercise

- Claim: For any sets A and B, $(A \cap B) \subseteq (A \cup B)$.
 - Prove it, or give a counterexample.
Ordered Pairs and n-tuples

- By design / definition, sets are good for asking questions of membership, but not for questions of relative ordering of elements
- A different structure, an n-tuple, represents elements and their ordering

- Definition: An ordered pair is a pair of elements expressed in parenthesis—e.g., (0,0), (9,17), (Jon Stewart, Stephen Colbert)
 - Order matters, so (17, 9) is not the same as (9, 17)
 - Similarly, order matters, so (0,0) does not contain redundant elements—the 0s are distinct from each other, by position
 - How could we state the criterion for identity for ordered pairs?
- This generalizes to n-tuples with more than 2 elements
 - E.g., (0,0),(3,4,5) are both 3-tuples; (72, 86, 94, 86, 76, 66, 72) is a 7-tuple

Set Product (Cartesian Product)

- Given sets A and B, ordered pairs can represent elements from those sets and which set each element came from
- Definition: The set product (or Cartesian product) of sets A and B is
 \[A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \} \]
 - That is, it’s the set of all pairs s.t. the first element is in A and the second element is in B
 - Note: This generalizes to more than two sets. \(A_1 \times A_2 \times \ldots \times A_n \) is all n-tuples s.t. the first element is from \(A_1 \), the second from \(A_2 \), …, and the n’th from \(A_n \)
- Exercises
 - What’s \{0, 1\} x \{1, 2, 3\}?
 - What’s \{1,2,3,4,5,6\} x \{1,2,3,4,5,6\}?
 - Let \(A = \{2\} \times \{1, \ldots, 28\} \), \(B = \{4,6,9,11\} \times \{1, \ldots, 30\} \), and \(C = \{1,3,5,7,8,10,12\} \times \{1, \ldots, 31\} \). What is \(A \cup B \cup C \)?

"Cogito ergo product"? Are you sure you don't mean Cartesian sum? Yes, I'm sure.