CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – M W 1:30pm
Lab – F 1:30pm

Lecture Meeting Location: SP 105
Lab Meeting Location: SP 309

Business

• HW4 out, extended due dates April 10 & 11
 – Programming due April 10, non-programming and printouts the 11th

• HW5-Lookahead out today
 – HW5 due April 19 & 20 (see HW sheet)

• Reading: Makinson, Ch.4.1-4.6
 – Our coverage of the material will be different from that in the textbook, but it’s good to see the textbook’s presentation, as well

• Reading: Prof. Hunsberger’s document “The Natural Numbers, Induction, and Numeric Recursion”
 – Posted on the Additional Notes / Readings page of the CS145 website
Multiplication

• Multiplication on the naturals can be defined recursively, similarly to addition on the naturals
• Definition of addition:
 1. Case $z=0$ -- For all n in \mathbb{N}, $n + 0 = n$
 2. Case $z=S(m)$ -- For all n in \mathbb{N}, $z = S(m)$ for some m in \mathbb{N}: $n + S(m) = S(n + m)$
• Definition of multiplication:
 3. Base case: $x * 0 = 0$
 4. Inductive case: $x * S(y) = (x*y) + x$
• Some notes about the phrasing of that definition
 – Abbreviations and condensed forms are used, but it really means what we would expect, based on the definition of addition
 – Sy is a shorthand for $S(y)$
 – Variables are implicitly universally quantified over the naturals. E.g., the base case is “For all x in \mathbb{N}, $x * 0 = 0$”. (cf. definition of addition)

Theorem: $0 * x = 0$. Prove (for all x in \mathbb{N}) by induction
– Let $P(n)$ be the proposition $0 * n = 0$
– Base case: $P(0)$. To prove…
– Inductive case: Assume $P(k)$, prove $P(Sk)$. To prove…
Multiplication

- Multiplication on the naturals can be defined recursively, similarly to addition on the naturals
- Definition of addition:
 1. Case $z=0$ -- For all n in N, $n + 0 = n$
 2. Case $z=S(m)$ -- For all n in N, $z = S(m)$ for some m in N: $n + S(m) = S(n + m)$
- Definition of multiplication:
 3. Base case: $x * 0 = 0$
 4. Inductive case: $x * S(y) = (x * y) + x$
- Theorem: Multiplication is commutative: $x * y = y * x$
 - What proposition should we use for $P(n)$?
 - Base case: $P(0)$. To prove…
 - Inductive case: Assume $P(k)$, prove $P(Sk)$. To prove…

This proof might be subtle in places… if there are some small details that need proof, be sure to prove them!

Multiplication (Theorem: Jove)

- Multiplication on the naturals can be defined recursively, similarly to addition on the naturals
- Definition of addition:
 1. Case $z=0$ -- For all n in N, $n + 0 = n$
 2. Case $z=S(m)$ -- For all n in N, $z = S(m)$ for some m in N: $n + S(m) = S(n + m)$
- Definition of multiplication:
 3. Base case: $x * 0 = 0$
 4. Inductive case: $x * S(y) = (x * y) + x$
- Theorem: Jove—$x = 1 * x$ (We use 1 as a common shorthand for $S0$)
 - What proposition should we use for $P(n)$?
 - Base case: $P(0)$. To prove…
 - Inductive case: Assume $P(k)$, prove $P(Sk)$. To prove…
Exponentiation

• Exponentiation on the naturals can be defined recursively, similarly to multiplication on the naturals
• Definition of multiplication:
 3. Base case: \(x \times 0 = 0 \)
 4. Inductive case: \(x \times Sy = (x\times y) + x \)
• Definition of exponentiation:
 5. \(x^0 = 1 \)
 6. \(x^{Sk} = (x^k) \times x \)
• Theorem: \(0^n = 0 \)
 – What proposition should we use for \(P(n) \)?
 – Base case: \(P(0) \). To prove…
 – Inductive case: Assume \(P(k) \), prove \(P(Sk) \). To prove…

Exponentiation

• Exponentiation on the naturals can be defined recursively, similarly to multiplication on the naturals
• Definition of multiplication:
 3. Base case: \(x \times 0 = 0 \)
 4. Inductive case: \(x \times Sy = (x\times y) + x \)
• Definition of exponentiation:
 5. \(x^0 = 1 \)
 6. \(x^{Sk} = (x^k) \times x \)
• Theorem: \(0^n = 0 \)
 – Be careful! This “Theorem” is actually false!