CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – M W 10:30am
Lab – F 3:10pm

Lecture Meeting Location: SP 105
Lab Meeting Location: SP 309

Business

• HW3 extended deadline: March 10 / March 11 (instead of March 8 / 9 on assignment sheet), as emailed
• HW2 back today
• Please read Ch.3.1-3.6

• Friday, March 11
 – Review session; not a lab
• Monday, March 28
 – Review session
• Wednesday, March 30
 – Exam: Will cover HWs 1-3
 – HW3 will be returned and reviewed as part of a review session on the first Monday after break
Relations and Functions

- A (binary) relation is a very general thing—it relates elements to other elements.
- A function is really just a specific kind of relation.
 - You’ve worked with functions before, in the mathematical sense… things like \(f(x) = x^2 \) or \(g(x,y) = x + y \).
 - Function relate things to other things, too—they’re a kind of relation.
- For a one-place (or unary) function (i.e., a function of one argument):
 - Definition: A one-place function from a set A into a set B is any binary relation R from A to B s.t. for all \(a \) in A there is exactly one \(b \) in B for which \((a,b) \in R \).

Composition of Functions

- Can you think of an application where you want to call one function \(g \) on the results of another function \(f \)?
 - … That is, where the argument (or input) to \(f \) results in a value (or output) from \(f \), and that output is used as the input to \(g \), to get output from \(g \)?
- This is extremely important in Computer Science, and it’s referred to as a *composition of functions*.
 - For function \(f: A \rightarrow B \) and function \(g: B \rightarrow C \), function \(g \circ f \) is the composition of \(g \) and \(f \).
 - \(g \circ f \) is a function from \(A \) to \(C \), where \((g \circ f)(a) = g(f(a)) \).
 - How do we know \(g \circ f \) is a function?

Note: When proving something is a function, show it is type correct, as well—here, we must show \(g \circ f \) takes inputs from \(A \) and gives outputs in \(C \) as part of a proof!
Example Compositions, to learn from

(Like, etudes?)

- **A composition of functions**
 - For function $f: A \rightarrow B$ and function $g: B \rightarrow C$, function $g \circ f$ is the composition of g and f
 - $g \circ f$ is a function from A to C, where $(g \circ f)(a) = g(f(a))$

- For these functions f and g, what is $g \circ f$? What is $f \circ g$?
 - $f(n) = n + 3; g(n) = 3n$
 - $f(n) = (n + 1)^2; g(n) = n - 1$
 - $f(n) = n + 5; g(n) = n - 5$
 - $f = \{(1,1), (2,2), (3,1)\}$, $g = \{(1,2), (2,3), (3,2)\}$ (both over $\{1,2,3\}$)

Function Inverses

- Recall for relations that an inverse R^{-1} of a relation R was defined as the set of all ordered pairs (b,a) s.t. $(a,b) \in R$—i.e., $R^{-1} = \{(b,a) \mid (a,b) \in R\}$.

- For functions, the concept of an inverse is the same—after all, a function is just a relation—but...
 - We know that the inverse of a relation is a relation
 - Is the inverse of a function always a function?

- Consider some examples. Let $A = \{1,2,3\}$, $B = \{a,b,c,d\}$
 - $f = \{(1,a), (2,d), (3,c)\}$. Is f^{-1} a function from B to A? Is it a function with some other domain and range?
 - $f = \{(1,a), (2,b), (3,c)\}$. Is f^{-1} a function from B to A? Is it a function with some other domain and range?
 - For this A and B, could there ever be a function from A to B for which f^{-1} is a function from B to A? Why or why not?
Even More Function Words: Injective, Surjective, Bijective

For a function f: A → B

- We say f: A → B is injective (or one-to-one) iff
 for any x, y ∈ A, whenever x ≠ y, f(x) ≠ f(y)
- We say f: A → B is surjective (or onto) iff
 for all b ∈ B, there exists some a ∈ A s.t. f(a) = b
 - Could there be more than one a ∈ A s.t. f(a) = b?
 - Could there be more than one b ∈ B s.t. f(a) = b?
- We say f: A → B is bijective iff it is one-to-one and onto
 - If a function is bijective, we can say it is a one-to-one correspondence between A and B
 - Why does it make sense to call it a one-to-one correspondence?
 Did we just say that about injective functions?

Hint: No we didn’t, though it kind of looks like we did. And the difference is important.

Even More Function Words: Injective, Surjective, Bijective

For a function f: A → B

- We say f: A → B is injective (or one-to-one) iff
 for any x, y ∈ A, whenever x ≠ y, f(x) ≠ f(y)
- We say f: A → B is surjective (or onto) iff
 for all b ∈ B, there exists some a ∈ A s.t. f(a) = b
- We say f: A → B is bijective iff it is one-to-one and onto
 - If a function is bijective, we can say it is a one-to-one correspondence between A and B

In each of those cases (injective, surjective, bijective), what can we say about the inverse f⁻¹?

- Is f⁻¹ necessarily a function?
- If so, what is its domain and range?
- If not, why not?
Intro to Cardinality Principles

- Intuition: If a relation from A to B is many-to-one, that *seems* to say something about the relative sizes of its *source* A and *target* B
- … but relations are too general to support that intuition the way we want.
- Functions, however, do let us make statements about the relative sizes (or *cardinalities*) of sets
 - Notation: For any finite set S, let |S| stand for the size of set S (i.e., the number of elements in S)
 - Your textbook uses the notation #(S) for the size of S

Cardinality Principles:
The Principle of Equinumerosity

- Functions, however, do let us make statements about the relative sizes (or *cardinalities*) of sets
- *The Principle of Equinumerosity*: For finite sets A and B,
 |A| = |B| iff there exists a bijection f from A to B
 - Recall f: A → B is *injective* (or *one-to-one*) iff
 for any x, y ∈ A, whenever x ≠ y, f(x) ≠ f(y)
 - Recall f: A → B is *surjective* (or *onto*) iff
 for all b ∈ B, there exists some a ∈ A s.t. f(a) = b
 - Recall f: A → B is *bijective* iff it is one-to-one and onto
- Does this Principle make sense? How could we prove it?
 - Hint: Put all the elements in A in an indexed list. Do the same for B. What could we use for function f that would be a bijection?
Cardinality Principles: The Principle of Comparison

- *The Principle of Equinumerosity*: For finite sets A and B, $|A| = |B|$ iff there exists a bijection f from A to B

- *The Principle of Comparison*: For finite sets A and B, $|A| \leq |B|$ iff there exists an injection (injective function) from A to B
 - Recall $f: A \rightarrow B$ is *injective* (or *one-to-one*) iff
 for any $x, y \in A$, whenever $x \neq y$, $f(x) \neq f(y)$
 - Recall $f: A \rightarrow B$ is *surjective* (or *onto*) iff
 for all $b \in B$, there exists some $a \in A$ s.t. $f(a) = b$
 - Recall $f: A \rightarrow B$ is *bijective* iff it is one-to-one and onto

- Does this Principle make sense? How could we prove it?
 - Hint: Put all the elements in A in an indexed list. Do the same for B. What could we use for function f that would be injective?