CS 145 – Foundations of Computer Science

Professor Eric Aaron

Lecture – M W 10:30am
Lab – F 3:10pm

Lecture Meeting Location: SP 105
Lab Meeting Location: SP 309

Business

• HW5 out, due April 19 / April 20 (see HW sheet)

• Lecture, not lab, in Friday’s class this week

• Exam grading update

• Reading: Makinson, Ch.4.1-4.6
 – Our coverage of the material will be different from that in the textbook, but it’s good to see the textbook’s presentation, as well

• Also Reading: Makinson, Ch. 5
Sometimes One Just Isn’t Enough:
The Strong Induction Story

• **Strong induction** is an alternative to standard induction
 – If the base case is some number \(b \) (i.e., Base case: show \(P(b) \) is true)
 – Then in strong induction, the I.H. is Assume \(P(n) \) for all \(b \leq n < k \)
 – And the inductive case is Show \(P(k) \)
 – Do you see how this follows from the same principles as standard induction? Think of dominoes falling….

• Example:
 – Claim: Every natural number \(n \geq 2 \) is either prime or the product of prime numbers.
 – Proof: **By strong induction!** Let \(P(n) \) be “\(n \) is either prime or the product of primes”.
 – What’s the base case? \(n = 2 \); prove \(P(2) \). Proof: \(2 \) is prime.
 – Inductive hypothesis: Assume \(P(n) \) for all \(2 \leq n < k \)
 – Inductive case: Show \(P(k) \). What’s the proof?

Postage Stamps

• Induction can be subtle
• Try proving the following claim by induction:
• Claim: Any postage cost of 4 or more cents can be exactly covered by 2-cent and 5-cent stamps
 – Example: 23 cents is \(4 \) 2-cent stamps and \(3 \) 5-cent stamps.
 – So, consider \(P(n) = “n = 2*x + 5*y \) for some natural numbers \(x, y \)”
 – Base case: \(n=4 \), Show \(P(4) \).
 – Inductive case: Assume \(P(k) \), show \(P(k+1) \) …
 \textbf{For arbitrarily chosen} \(k \)—that is, it must be proved for all values of \(k \)
Postage Stamps

• Induction can be subtle
• Try proving the following claim by induction:
• Claim: Any postage cost of 4 or more cents can be exactly covered by 2-cent and 5-cent stamps
 – Example: 23 cents is 4 2-cent stamps and 3 5-cent stamps.
 That is, $23 = 4 \cdot 2 + 3 \cdot 5$.
 – So, consider $P(n) = "n = 2x + 5y"$ for some natural numbers x, y.
 – Base case: $n=4$. Show $P(4)$.
 – Inductive case: Assume $P(k)$ for arbitrary $k \geq 4$, show $P(k+1)$.
 • By I.H., $k = 2x + 5y$ for some x, y. Then, show there exist x', y' such that $(k+1) = 2x' + 5y'$:
 • $k+1 = 2x + 5y + 1 = 2x + 5(y-1) + 6 = 2(x+3) + 5(y-1)$. We’re done, right?
 [Hint: No, we’re not done. What’s the error in this proof?]

Postage Stamps

• Claim: Any postage cost of 4 or more cents can be exactly covered by 2-cent and 5-cent stamps
 – Consider $P(n) = "n = 2x + 5y"$ for some natural numbers x, y.
 – Base case: $n=4$. Show $P(4)$.
 – Inductive case: Assume $P(k)$ for arbitrary $k \geq 4$, show $P(k+1)$.
 • By I.H., $k = 2x + 5y$ for some x, y. Then, show there exist x', y' such that $(k+1) = 2x' + 5y'$:
 • $k+1 = 2x + 5y + 1 = 2x + 5(y-1) + 6 = 2(x+3) + 5(y-1)$.
 • We’re done, right? Not if $k = 4$, or any number for which y is 0. In other words, it doesn’t hold for all k.
 – Would strong induction help? Inductive case: Assume (as I.H.) $P(n)$ for all $4 \leq n < k$; show $P(k)$.
 • How would that proof go for $k = 5$?
Postage Stamps

• The difficulties on the previous slides suggest that we might need more coverage in our base case(s) to allow the inductive case to hold for all numbers.

• Claim: Any postage cost of 4 or more cents can be exactly covered by 2-cent and 5-cent stamps
 – Consider $P(n) = \text{“}n = 2x + 5y\text{” for some natural numbers } x, y\text{”}$
 – Base cases: $n=4$ and $n=5$. Show $P(4)$ and $P(5)$
 – Inductive case: Assume $P(k)$ and $P(k+1)$ for arbitrary $k \geq 4$, show $P(k+2)$.
 • How could we complete this proof?

Exercise: Might As Well Be Postage Stamps

• Claim: Every positive integer $n \geq 14$ can be written as a sum of 3s and 8s
 – i.e., there exist some x, y s.t. $n = 3x + 8y$

• Proof: By induction!
 – (What’s the proof?)
Proving Statements about Recursively Defined Sets

• A related kind of induction is called structural induction, which can be used to prove claims about all items constructed by a recursive definition.

• To prove property P holds for all elements of a recursively defined set:
 – Base case(s): Show that P holds for every element in the basis for the recursive definition.
 – Inductive case(s): Show that every constructor in the definition preserves property P.

• Recall the definition of transitive closure:
 – \(R_0 = R \)
 – \(R_{n+1} = R_n \cup \{ (a,c) \mid \exists x \text{ s.t. } (a,x) \in R_n \text{ and } (x,c) \in R \} \)

• Claim: In the above definition, R is a subset of \(R_i \) for all i. Prove by structural induction.