CMPU 241-Algorithmics
 Spring 2020
 Assignment 1
 Due: Thursday, Feb. 6th, by midnight

NAME: (2 points)

1. (8 points) Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the number stored in $A[1]$. Then find the second smallest element of A, and exchange it with $A[2]$. Continue in this manner for the first $n-1$ elements of A. This algorithm, called Selection-Sort, is given below. Assume the input and output are as specified for the sorting problem on page 16 of our textbook.

Selection-Sort(A):

$$
\begin{aligned}
& n=A \text {.length } \\
& \text { for } j=1 \text { to } n-1 \\
& \text { smallest }=j \\
& \quad \text { for } i=j+1 \text { to } n \\
& \quad \text { if } A[i]<A[\text { smallest }] \\
& \quad \text { smallest }=i \\
& \quad \text { exchange } A[j] \text { with } A \text { [smallest }]
\end{aligned}
$$

(a) (1 point) Give the line number(s) of the basic operation in the algorithm
(b) (2 points) Write a nested summation to describe the number of times the basic operation of SELECTION-Sort is executed on an input of size n and then express this summation as a closedform solution.
(c) (2 points) Why does the outer for loop of the algorithm need to run for only the first $n-1$ elements?
(d) (3 points) Are there best-case and worst-case asymptotic running times for SELECTION-Sort? If so, give the best-case and worst-case running times of the algorithm in Θ notation. If not, give the worst-case running time in Θ notation. Explain your answer.
2. (4 points) Answer true or false. Use the definitions of O, Θ, and Ω to determine whether the following assertions are true or false. Briefly justify your answers.
a. $\left(n^{2}(n+1)\right) / 2 \in O\left(n^{3}\right)$
b. $n(n+1) / 2 \in O(n)$
c. $n(n+1) / 2 \in \Theta\left(n^{3}\right)$
d. $n(n+1) / 2 \in \Omega(n)$
3. (4 points) For each of the following functions, indicate the set $\Theta(g(n))$ the function belongs to. Show your work in simplifying these expressions to arrive at each answer.
a. $\left(n^{2}+1\right)^{10}$
b. $\sqrt{\left.10 n^{2}+7 n+3\right)}$
c. $2^{n+1}+3^{n-1}$
d. $\lfloor\lg n\rfloor$
4. (2 points) Answer Yes or No and provide a brief justification for each question below:
a. Is $2^{n+1} \in O\left(2^{n}\right)$?
b. Is $2^{2 n} \in O\left(2^{n}\right)$?

