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CS241&–&Analysis&of&Algorithms&
Spring&2020&

•  Prerequisites:  CMPU102 and CMPU145.  
 
•  Lectures:  Lectures will be held on M/W from 1:30 to 2:45 pm in SP 

201.   
 

•  Textbook:  Introduction to Algorithms (3rd Edition), by Thomas H. 
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 
 
!  For this week, read chapters 1-4 of CLRS    

 

Course&Web&Page&
•  All information about the course will be posted on 

the course web page at  
https://www.cs.vassar.edu/~cs241 

Lecture notes, readings, assignments, videos, etc., 
will be posted on this site  

 
•  Check your e-mail frequently for course 

announcements. 
 

Algorithms&

• For the purposes of this class, an algorithm is a 
computational procedure that takes some value, or set 
of values, as input and produces some value, or set of 
values, as output, and eventually terminates. 

 
 

What is an algorithm? 

Algorithmic&Problems&

•  An algorithmic problem is the complete set of possible 
input instances the algorithm may work on and the 
desired output from each input instance.  

 
 

What is an algorithmic problem? 

Sor>ng&Problem&
The algorithmic problem known as sorting is defined as 
follows: 
 
INPUT:      An array A[1…n] of n totally ordered elements {a1, a2,..., an}
OUTPUT:  A permutation of the input array {a1!, a2!,..., an!} 

     such that a1!≤ a2!≤...≤ an!. 
 

Example instances of input for the sorting problem: 
 {Mike, Sally, Herbert, Tony, Jill}     
 {101, 111111, 1111, 100, 1010, 101010} 

 
Example instances of output for the given instances of the sorting problem 
above: 

 {Herbert, Jill, Mike, Sally, Tony}     
 {100, 101, 1010, 1111, 101010, 111111} 

Algorithm&Efficiency&
Observation:  Most algorithms we care about run longer on 
larger inputs.  Larger inputs also take more space in 
memory. 
 
   
 
We want to investigate an algorithm’s efficiency as a 
function of some parameter n indicating the algorithm’s 
input size. 
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Measures&of&Complexity&
What metrics of an algorithm are considered when 
comparing algorithm complexity? 

Time%and%Space%are%1st%and%2nd%in%terms%of%importance.%
%
For%distributed%algorithms%on,%e.g.,%ad;hoc%networks%or%
mobile%robots:%

% %Number%of%messages%
%

% %Power%consumpAon%

Measuring&Algorithm&Time&
1.  Implement algorithm and include a system call to count the 

number of milliseconds it takes to run. 

2.  count the exact number of times each of the algorithm’s 
operations is executed, assuming each particular line takes a 
constant amount of time for a data set of size n, and add time of 
all lines to get a (rather complicated) polynomial expression.   
 

3.  identify the operations (line or loop) that contribute most to the 
total running time (usually a statement that begins a loop and one 
or more of the lines internal to the loop) and count the number of 
times that operation is executed.  

             
 ==> the basic operation  

 

Analyzing&Algorithms&
Goal – to  predict the number of steps executed by an 
algorithm in a machine- and language-independent way 
using:  
 
 

1.  the RAM model of computation 

2.  asymptotic analysis of worst-case complexity  
  

RAM&Model&of&Computa>on&
Single-processor machine: instructions are executed 
sequentially (no concurrent operations.)  
 
The running time T(n) of an algorithm on a particular input 
instance of size n is the number of times the basic operation 
is executed.  Expressed in terms of n, the input size.  
 
To make the notion of an algorithm step as machine-
independent as possible, assume: 
 

Each execution of the ith line takes a constant 
amount of time. 

      

Flow&of&Control&
Loops and their recursive counterparts are the composition 
of many primitive steps (as you know if you have done any 
assembly language programming).  
 
Execution time depends on the number of loop iterations or 
recursive calls (usually a function of the input size).  
 
First, we consider iterative algorithms. We will represent the 
running time of loops (iterative algorithms) using 
summations.  

Input&Effects&on&Running&Time&

&Some algorithms take the same amount of time on all input instances 
of a given size, n.   
 
For other algorithms, there are best-case, worst-case, and average-
case input instances that depend on other qualities of the input than 
just the input size.   
 
For algorithm A on input of size n:  

 

Worst-case input  (wc):  The input(s) for which A executes the 
most steps, considering all possible inputs of size n.   
 

Best-case input  (bc):  The input(s) for which A executes the 
fewest steps, considering all inputs of size n. 
 
Average-case input: Usually close to Worst-case, asymptotically. 
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%

%%%%%%%FindMax(A[1…n])%
%
%
%
%

1.  %max%=%A[1]%
2.  %for%(%k%=%2%to%n)%
3.  %%%%%%if%(A[k]%>%max)%
4.  %%%%%%%%%%%max%=%A[k]!!
5.  %return%max%

%
%

For%input%of%comparable,!totally!ordered%set%of%data:%%
%%%%%%%%%%%%%%%%%[23,%53,%5,%34,%42,%18]%%"%53%
%

INPUT:      An array A of n totally ordered items 
 
OUTPUT:  The value of the maximum item in the array  

Pseudocode&& Book&Idiosyncrasy&
In our textbook, arrays are usually assumed to be numbered starting at 
1, not 0 as we are all used to. 
 
Take careful note of whether the algorithms in the book (and those you 
write or see in class) use 1- or 0-based indexing on arrays. The index 
number can be important not only to understand how the algorithm 
works, but is often essential in proving algorithm correctness. 
 

Handy&Summa>on&Rules&&
for&Itera>ve&Algorithms&

Simple%(non;nested)%loops:%
%for%k%=%1...n%%
%%%%%%%print(k)%

%%%%%%%%%%

%

%

%
%

%
%%%%%%%%%%

%

%

%

%

1
k=1

n

∑ = n−1+1= n

Handy&Summa>on&Rules&&
for&Itera>ve&Algorithms&

%SummaAon%as%i%goes%from%1%to%n%of%%i%
%

%

%
%%%%%%%
%%%%%%%%%%%%%%%%Proof%of%above:%%Add%1...n%to%n...1%to%get%n(n+1).%%Then%divide%by%2.%

%

%

%

i
i=1

n

∑ =1+ 2+3+...+ n = (n(n+1)) / 2

+

(1+ 2+3+...+ n)
(n+ (n−1)+...+1)

(n+1)+ (n+1)+...(n+1)
=
n(n+1)
2

 

       FindMax(A[1…n]) 
 
 
 

1.   max = A[1] 
2.   for ( k = 2;  k <= n; k++ ) 
3.        if (A[k] > max) 
4.             max = A[k]  
5.   return max 

INPUT:      An array A of n comparable items 
 
OUTPUT:  The value of the maximum item in the array  

Expressing&loops&as&summa>ons&

NOTE: When a while or for loop 

is executed, the test in the loop 

header is executed one more 

time than the code in the loop 

body. 

1
k=2

n

∑ = n− 2+1= n−1

Expressing&loops&as&summa>ons&
Algorithm%PrefixAverages;v1(X):%
Input:%%%An%n;element%array%X%of%numbers%
%

Output:%An%n;element%array%A%of%numbers%such%that%A[i]%is%%%%
%%%%%%%%%%%%%%%the%average%of%elements%X[1],%...%,%X[i].%
%

1.%Create%an%array%A%such%that%length[A]%=%n%
2.%s%=%0%
3.%for%(%i%=%1%to%n%)%
4.%%%%%%%s%=%s%+%X[i]%%
5.% %%%%%A[i]%=%s%/%i%%
6.%return%A%

%

1
i=1

n

∑ = n−1+1= n
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Analysis&of&PrefixAveragesPv1%
1.%Create%an%array%A%such%that%length[A]%=%length[X]%=%n%
2%.%s%=%0%
3.%for&(%j&=%1%to%length[X]%)&
4.&&&&&&&&&&s&=%s%+%X[j]%
5.%%%%%%%%%%A[j]%=%s%/%j%
6.%return%A%

1.% %T(n)%=%%4n%+%3%%%
2.% %Are%there%best;%and%worst;case%inputs?%%No%

To&do&in&class:&Give&T(n)&and&are&there&bPc&&&wPc&inputs?&

Expressing&loops&as&summa>ons&
Algorithm%PrefixAverages;v2(X):%
Input:%%%An%n;element%array%X%of%numbers%
%

Output:%An%n;element%array%A%of%numbers%such%that%A[i]%is%%%%
%%%%%%%%%%%%%%%%the%average%of%elements%X[1],%...%,%X[i].%
%

1.%Create%an%array%A%such%that%length[A]%=%n%
2.&&for%(j%=%1%to%n)&
3. %%%%%a%=%0%
4. &&&&&for%(%i%=%1%to%j)%
5. % %%a%=%a%+%X[i]%%
6. %%%%%A[j]%=%a%/%j%
7.%%return%A%

1
i=1

j

∑ = j−1+1= j
j=1

n

∑
j=1

n

∑
j=1

n

∑ =
(n2+n)
2

Analysis&of&PrefixAveragesPv2%
1.%Create%an%array%A%such%that%length[A]%=%n%
2.&&for%(j%=%1%to%n)&
3. %%%%%a%=%0%
4. &&&&&for%(%i%=%1%to%j)%
5.%%%%%%%%%%%%%%a%=%a%+%X[i]%%
6. %%%%%A[j]%=%a%/%j%
7.%%return%A%

1.%T(n)%=%n2%+%3n%+%2%%
%
2.%Are%there%best%and%worst%case%inputs?%%%No%

1
i=1

j

∑ = j−1+1= j
j=1

n

∑
j=1

n

∑
j=1

n

∑ =
(n2+n)
2

To&do&in&class:&Give&T(n)&and&are&there&bPc&&&wPc&inputs?&

 

       InsertionSort(A) 
 
 
 
 
 

1.    for ( j  = 2 to length[A] ) 
2.         key = A[j] 
3.         i = j – 1 
4.         while ( i > 0 and A[i] > key) // short-circuiting and 
5.                 A[i + 1] = A[i] 
6.             i = i - 1 
7.         A[i + 1] =  key 

INPUT:      An array A of n items {a1, a2,..., an} 
 
OUTPUT:  A permutation of the input array {a1!, a2!,..., an!} 

    such that a1!≤ a2!≤...≤ an!. 

Sor>ng&Algorithms&

Analysis&of&Inser>onSort&&
 

         InsertionSort(A)       
1. for j  = 2 to length[A] 
2.       key = A[j] 
3.       i = j – 1 
4.       while i > 0 and A[i] > key 
5.             A[i + 1] = A[i] 
6.    i = i – 1 
7.       A[i + 1] =  key 

•  For insertion sort, 
does the running 
time vary for different 
input instances? 
 
If so, give instances 
of best-case and 
worst-case inputs. 

Best&Case&input&instance:&&&{2&&4&&6&&7&&9&&10&&12}&&(already&sorted)&

Worst&Case&input&instance:&&{12&&10&&9&&8&&5&&2&&1}&&(reverse&sorted)&

Analysis%of%InserAonSort&&

InsertionSort sorts an array of elements in ascending order. 
 

    InsertionSort(A)      times    

  1. for j = 2 to length[A]             n 

  2.       key = A[j]         n-1 

  3.       i = j - 1         n-1 

  4.       while i > 0 and A[i] > key  

             

  5.             A[i + 1] = A[i] 

             

  6.             i = i - 1                   

  7.       A[i + 1] = key                n-1    

€ 

t j
j= 2

n

∑

€ 

(t j −1)
j= 2

n

∑

€ 

(t j −1)
j= 2

n

∑
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General&Plan&for&Analyzing&Time&Efficiency&
of&NonPrecursive&Algorithms&

1.  Decide%on%a%parameter%indicaAng%input%size.%
2.  IdenAfy%the%algorithm’s%basic%operaAon.%
3.  If%the%number%of%Ames%the%basic%operaAon%is%executed%

depends%only%on%the%size%of%the%input,%give%worst;case%
efficiency.%If%this%number%also%depends%on%some%
addiAonal%property,%the%worst;case%and%best;case%
efficiencies%should%be%given%separately.%

4.  If%possible,%set%up%a%sum%expressing%the%number%of%Ames%
the%basic%operaAon%is%executed.%

5.  Use%standard%rules%of%sum%manipulaAon%to%find%a%
closed;form%soluAon%for%the%count%of%operaAons.%%

 

       SelectionSort(A) 
 
 
 
 

1.    for ( i  = 1 to n - 1 ) 
2.        min = i 
3.        for ( j = i+1 to n) 
4.            if (A[j] < A[min]) 
5.                min = j 
6.        swap (A[i], A[min]) 

INPUT:      An array A of n items {a1, a2,..., an} 
 
OUTPUT:  A permutation of the input array {a1!, a2!,..., an!} 

    such that a1!≤ a2!≤...≤ an!. 

Sor>ng&Algorithm&&&

Next&Lecture:&Chapters&3&and&4&&
Asympto>c&Analysis&and&Running&>me&of&recursive&

dividePandPconquer&algorithms&
&
&
&
&


