CS241 - Analysis of Algorithms Spring 2020

- Prerequisites: CMPU102 and CMPU145.
- Lectures: Lectures will be held on M/W from 1:30 to $2: 45 \mathrm{pm}$ in SP 201.
- Textbook: Introduction to Algorithms (3rd Edition), by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

For this week, read chapters 1-4 of CLRS

Algorithms
What is an algorithm?
- For the purposes of this class, an algorithm is a
computational procedure that takes some value, or set
of values, as input and produces some value, or set of
values, as output, and eventually terminates.

Sorting Problem

The algorithmic problem known as sorting is defined as follows:

INPUT: An array $\mathrm{A}[1 \ldots \mathrm{n}]$ of n totally ordered elements $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right\}$
OUTPUT: A permutation of the input array $\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\}$
such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \ldots \leq a_{n}{ }^{\prime}$.
Example instances of input for the sorting problem.
\{Mike, Sally, Herbert, Tony, Jill\}
$\{101,111111,1111,100,1010,101010\}$
Example instances of output for the given instances of the sorting problem above:
\{Herbert, Jill, Mike, Sally, Tony\}
$\{100,101,1010,1111,101010,111111\}$

For the purposes of this class, an algorithm is a都 of values, as input and produces some value, or set of values, as output, and eventually terminates.

Course Web Page

- All information about the course will be posted on the course web page at
https://www.cs.vassar.edu/~cs241
Lecture notes, readings, assignments, videos, etc., will be posted on this site
- Check your e-mail frequently for course announcements.

Algorithmic Problems

What is an algorithmic problem?

- An algorithmic problem is the complete set of possible input instances the algorithm may work on and the desired output from each input instance.

Algorithm Efficiency

Observation: Most algorithms we care about run longer on larger inputs. Larger inputs also take more space in memory.

We want to investigate an algorithm's efficiency as a function of some parameter n indicating the algorithm's input size.

Measures of Complexity

What metrics of an algorithm are considered when comparing algorithm complexity?

Time and Space are $1^{\text {st }}$ and $2^{\text {nd }}$ in terms of importance.
For distributed algorithms on, e.g., ad-hoc networks or mobile robots:

Number of messages
Power consumption

Measuring Algorithm Time

1. Implement algorithm and include a system call to count the number of milliseconds it takes to run.
2. count the exact number of times each of the algorithm's operations is executed, assuming each particular line takes a constant amount of time for a data set of size n, and add time of all lines to get a (rather complicated) polynomial expression.
3. identify the operations (line or loop) that contribute most to the total running time (usually a statement that begins a loop and one or more of the lines internal to the loop) and count the number of times that operation is executed.
==> the basic operation

Analyzing Algorithms

Goal - to predict the number of steps executed by an algorithm in a machine- and language-independent way using

1. the RAM model of computation
2. asymptotic analysis of worst-case complexity

Flow of Control

Loops and their recursive counterparts are the composition of many primitive steps (as you know if you have done any assembly language programming).

Execution time depends on the number of loop iterations or recursive calls (usually a function of the input size).

First, we consider iterative algorithms. We will represent the running time of loops (iterative algorithms) using summations.

RAM Model of Computation

Single-processor machine: instructions are executed sequentially (no concurrent operations.)

The running time $T(n)$ of an algorithm on a particular input instance of size n is the number of times the basic operation is executed. Expressed in terms of n, the input size.

To make the notion of an algorithm step as machineindependent as possible, assume:

Each execution of the $i^{\text {th }}$ line takes a constant amount of time.

Input Effects on Running Time

Some algorithms take the same amount of time on all input instances of a given size, n.

For other algorithms, there are best-case, worst-case, and averagecase input instances that depend on other qualities of the input than just the input size.

For algorithm A on input of size n :
Worst-case input (wc): The input(s) for which A executes the most steps, considering all possible inputs of size n.
Best-case input (bc): The input(s) for which A executes the fewest steps, considering all inputs of size n.

Average-case input: Usually close to Worst-case, asymptotically.

Book Idiosyncrasy

In our textbook, arrays are usually assumed to be numbered starting at 1 , not 0 as we are all used to.

Take careful note of whether the algorithms in the book (and those you write or see in class) use 1- or 0-based indexing on arrays. The index number can be important not only to understand how the algorithm works, but is often essential in proving algorithm correctness.

Handy Summation Rules for Iterative Algorithms

Simple (non-nested) loops:
for $k=1 . . . n$ print(k)

$$
\sum_{k=1}^{n} 1=n-1+1=n
$$

Expressing loops as summations

FindMax(A[1...n])
INPUT: An array A of n comparable items
OUTPUT: The value of the maximum item in the array

1. $\max =A[1]$
for $(k=2 ; k<=n ; k++)$
if $(A[k]>\max)$ $\max =A[k]$
return max
$\sum_{k=2}^{n} 1=n-2+1=n-1$

Handy Summation Rules for Iterative Algorithms

Summation as i goes from 1 to n of i

$$
\begin{gathered}
\sum_{i=1}^{n} i=1+2+3+\ldots+n=(n(n+1)) / 2 \\
\quad \text { Proof of above: Add } 1 \ldots . . n \text { to } n \ldots 1 \text { to get } n(n+1) \text {. Then divide by } 2 \text {. }
\end{gathered}
$$

$$
\begin{gathered}
(1+2+3+\ldots+n) \\
+\frac{(n+(n-1)+\ldots+1)}{(n+1)+(n+1)+\ldots(n+1)}=\frac{n(n+1)}{2}
\end{gathered}
$$

Expressing loops as summations

Algorithm PrefixAverages-v1(X):
Input: An n-element array X of numbers
Output: An n-element array A of numbers such that $A[i]$ is the average of elements $X[1], \ldots, X[i]$.

1. Create an array A such that length $[A]=n$
2. $s=0$
3. for ($\mathrm{i}=1$ to n)
4. $s=s+X[i]$
5. $A[i]=s / i$
6. return A
$\sum_{i=1}^{n} 1=n-1+1=n$

Analysis of PrefixAverages-v1

Expressing loops as summations

1. Create an array A such that length $[A]=$ length $[X]=n$
2. $\mathrm{s}=0$
3. for ($\mathrm{j}=1$ to length $[\mathrm{X}]$)
. $\quad \mathbf{s}=\mathbf{s}+\mathrm{X}[\mathrm{j}]$
$A[j]=s / j$
4. return A

To do in class: Give $T(n)$ and are there $b-c$ \& $w-c$ inputs?

1. $\mathrm{T}(\mathrm{n})=4 \mathrm{n}+3$
2. Are there best- and worst-case inputs? No

Algorithm PrefixAverages-v2(X):
Input: An n-element array X of numbers
Output: An n-element array A of numbers such that $A[i]$ is the average of elements $\mathrm{X}[1], \ldots, \mathrm{X}[\mathrm{i}]$.
. Create an array A such that length $[A]=n$
for ($\mathrm{j}=1$ to n)

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{a}=0 \\
\text { for (} \mathrm{i}=1 \text { to } \mathrm{j}) \\
\mathrm{a}=\mathrm{a}+\mathrm{X}[\mathrm{i}]
\end{array} \quad \sum_{j=1}^{n} \sum_{i=1}^{j} 1=\sum_{j=1}^{n} j-1+1=\sum_{j=1}^{n} j=\frac{\left(n^{2}+n\right)}{2}
\end{aligned}
$$

$A[j]=a / j$
. return A

Analysis of PrefixAverages-v2

1. Create an array A such that length $[A]=n$
2. for ($\mathrm{j}=1$ to n)

$$
a=0
$$

$$
\text { for (} \mathrm{i}=1 \text { to } \mathrm{j} \text {) }
$$

$$
a=a+X[i]
$$

$$
A[j]=a / j
$$

$$
\sum_{j=1}^{n} \sum_{i=1}^{j} 1=\sum_{j=1}^{n} j-1+1=\sum_{j=1}^{n} j=\frac{\left(n^{2}+n\right)}{2}
$$

return A
To do in class: Give $\mathrm{T}(\mathrm{n})$ and are there b-c \& w-c inputs?

1. $T(n)=n^{2}+3 n+2$
2. Are there best and worst case inputs? No

Sorting Algorithms

InsertionSort(A)
INPUT: An array A of n items $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
OUTPUT: A permutation of the input array $\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\}$
such that $a_{1} \leq a_{2}{ }^{\prime} \leq \ldots \leq a_{n}{ }^{\prime}$.
for $(\mathrm{j}=2$ to length $[\mathrm{A}])$
key $=A[j]$
$\mathrm{i}=\mathrm{j}-1$
while ($\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key) // short-circuiting and $A[i+1]=A[i]$
$\mathrm{i}=\mathrm{i}-1$
$A[i+1]=$ key

Analysis of InsertionSort
Best Case input instance: $\left\{\begin{array}{ll}2467910 & 12\end{array}\right\}$ (already sorted) Worst Case input instance: \{12 1098521$\}$ (reverse sorted)

```
General Plan for Analyzing Time Efficiency
        of Non-recursive Algorithms
    1. Decide on a parameter indicating input size.
    2. Identify the algorithm's basic operation.
    3. If the number of times the basic operation is executed
        depends only on the size of the input, give worst-case
        efficiency. If this number also depends on some
        additional property, the worst-case and best-case
        efficiencies should be given separately.
    4. If possible, set up a sum expressing the number of times
        the basic operation is executed.
    5. Use standard rules of sum manipulation to find a
        closed-form solution for the count of operations.
```


Sorting Algorithm

```
SelectionSort(A)
INPUT: An array A of n items {a, , a},\ldots,\ldots,\mp@subsup{a}{n}{}
OUTPUT: A permutation of the input array {a }\mp@subsup{}{1}{\prime},\mp@subsup{a}{2}{\prime},\ldots,\mp@subsup{a}{n}{\prime}
        such that a, ' }\leq\mp@subsup{\textrm{a}}{2}{\prime}\leq...< < an.'
    for(i = 1 to n-1)
    min = i
    for ( j = i+1 to n)
            if (A[j] < A[min])
                min = j
        swap (A[i], A[min])
```

Next Lecture: Chapters 3 and 4
Asymptotic Analysis and Running time of recursive divide-and-conquer algorithms

