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Lower Bounds for Comparison-
Based Sorting Algorithms (Ch. 8) 

In all comparison-based sorting algorithms, the sorted order results  
only from comparisons between input elements. 
 

We have seen several sorting algorithms that run in Ω(nlgn) time in 
the worst case (meaning there is some input on which the algorithms 
run in at least Ω(nlgn) time). 

•   mergesort 
•   heapsort 
•   quicksort 

Is it possible for any comparison-based sorting algorithm to do better?  

Lower Bounds for Sorting Algorithms 
Theorem:  Any comparison-based sort must make Ω(nlgn) 
comparisons in the worst case to sort a sequence of n elements. 
(Across all comparison-based sorting algorithms, no worst case  
runs faster than nlgn time.) 

But how do we prove this? 
 

We'll use the decision tree model to represent any sorting algorithm 
and then argue that no matter the algorithm, there is some input  
that will cause it to run in Ω(nlgn) time. 
 
Question:  How many ways are there to order n elements?     n! 

Binary	  tree	  	  
Recall	  that	  a	  binary	  tree	  is	  a	  tree	  data	  structure	  in	  which	  
each	  node	  has	  at	  most	  2	  children,	  a	  le:	  child	  and	  a	  right	  
child.	  
	  
Sources	  differ,	  but	  most	  authors	  agree	  that	  a	  full	  or	  proper	  
binary	  tree	  is	  one	  in	  which	  every	  node	  has	  0	  or	  2	  children.	  
	  

Binary	  tree	  height	  and	  upper	  
bound	  on	  number	  of	  leaves	  

The	  height	  of	  a	  node	  x	  is	  the	  maximum	  number	  of	  edges	  on	  a	  path	  from	  a	  
leaf	  to	  x.	  
	  

Theorem:	  A	  proper	  binary	  tree	  (pbt)	  of	  height	  h	  has	  at	  most	  2h	  leaves.	  
	  

Basis:	  a	  pbt	  of	  height	  0	  has	  20	  =	  1	  leaf	  
	  

InducKve	  hypothesis:	  a	  pbt	  of	  height	  k	  ≥	  1	  has	  at	  most	  2k	  leaves.	  
	  

InducKve	  step:	  Show	  a	  pbt	  of	  height	  k+1	  has	  at	  most	  2k+1	  leaves.	  
	  

By	  the	  IHOP,	  we	  know	  that	  a	  pbt	  of	  height	  k	  has	  at	  most	  2k.	  	  A	  pbt	  of	  
height	  k+1	  is	  a	  pbt	  of	  height	  k	  in	  which	  one	  or	  more	  leaves	  has	  2	  children.	  
So	  the	  number	  of	  leaves	  in	  a	  pbt	  of	  height	  2k+1	  	  is	  at	  most	  2(2k)	  =	  2k+1	  	  	  
QED	  

The Decision Tree Model 
Given any comparison-based sorting algorithm, we can represent 
its behavior on an input of size n by a decision tree – a proper binary 
tree.   
 

A decision tree is a binary tree such that 
 

•   each internal node in the decision tree corresponds to one of the 
         comparisons in the algorithm. 
 

•   each node represents a comparison of 2 values (e.g.,  x : y) s.t.  
    - if x ≤ y, take left branch, else if x > y, take right branch. 
 

•   each leaf in the decision tree represents one possible ordering of 
 the input. 

 
 ⇒  One decision tree exists for each algorithm and input size 

The Decision Tree Model 
Example:  decision tree with n = 3, with elements A[1..3] has 3! = 6 leaves 
containing 3 numbers sorted in ascending order. 

A[1]	  vs	  A[2]	  

A[2]	  vs	  A[3]	   A[1]	  vs	  A[3]	  

A[1]	  vs	  A[3]	   A[2]	  vs	  A[3]	  A[1],	  A[2],	  A[3]	  

A[1],	  A[3],	  A[2]	   A[3],	  A[1],	  A[2]	  

A[2],	  A[1],	  A[3]	  

A[2],	  A[3],	  A[1]	   A[3],	  A[2],	  A[1]	  
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Let the length of the longest root to leaf path in this tree be h 
 

 =  worst-case number of comparisons 

 ≤  worst-case number of operations of algorithm  
           (since other operations only make the algorithm run longer) 
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The	  Ω(nlgn)	  Lower	  Bound	  	  
Theorem: Any decision tree for sorting n elements has height Ω(nlgn) 
(therefore, any comparison-based sorting algorithm requires Ω(nlgn) 
comparisons in worst case). 

Proof: Let h be the height of the tree.  Then we know 
•    the tree has at least (≥) n! leaves 
•    the tree is binary, so it has at most (≤) 2h leaves  
 

# of leaves is upper bounded by 2h and lower bounded by n! 

2h  ≥  number of leaves  ≥  n! 
so we have: 

  2h           ≥    n!    
taking lg of both sides: 

  lg(2h)  ≥   lg(n!) 

          h       ≥  Ω(nlgn)  (Eq. 3.18)     ¨ 
 

Optimal Sorting Algorithms
•  This lower bound proof tells us that heap-sort and 

merge-sort are asymptotically optimal comparison-
based sorting algorithms.  

•  Randomized-Quick-Sort is asymptotically optimal with 
high probability.

•  insertion-sort, selection-sort, and bubble-sort are not 
asymptotically optimal comparison-based algorithms.

 


