
2/17/20	

1	

Lower Bounds for Comparison-
Based Sorting Algorithms (Ch. 8)

In all comparison-based sorting algorithms, the sorted order results
only from comparisons between input elements.

We have seen several sorting algorithms that run in Ω(nlgn) time in
the worst case (meaning there is some input on which the algorithms
run in at least Ω(nlgn) time).

•  mergesort
•  heapsort
•  quicksort

Is it possible for any comparison-based sorting algorithm to do better?

Lower Bounds for Sorting Algorithms
Theorem: Any comparison-based sort must make Ω(nlgn)
comparisons in the worst case to sort a sequence of n elements.
(Across all comparison-based sorting algorithms, no worst case
runs faster than nlgn time.)

But how do we prove this?

We'll use the decision tree model to represent any sorting algorithm
and then argue that no matter the algorithm, there is some input
that will cause it to run in Ω(nlgn) time.

Question: How many ways are there to order n elements? n!

Binary	 tree	 	
Recall	 that	 a	 binary	 tree	 is	 a	 tree	 data	 structure	 in	 which	
each	 node	 has	 at	 most	 2	 children,	 a	 le:	 child	 and	 a	 right	
child.	
	
Sources	 differ,	 but	 most	 authors	 agree	 that	 a	 full	 or	 proper	
binary	 tree	 is	 one	 in	 which	 every	 node	 has	 0	 or	 2	 children.	
	

Binary	 tree	 height	 and	 upper	
bound	 on	 number	 of	 leaves	

The	 height	 of	 a	 node	 x	 is	 the	 maximum	 number	 of	 edges	 on	 a	 path	 from	 a	
leaf	 to	 x.	
	

Theorem:	 A	 proper	 binary	 tree	 (pbt)	 of	 height	 h	 has	 at	 most	 2h	 leaves.	
	

Basis:	 a	 pbt	 of	 height	 0	 has	 20	 =	 1	 leaf	
	

InducKve	 hypothesis:	 a	 pbt	 of	 height	 k	 ≥	 1	 has	 at	 most	 2k	 leaves.	
	

InducKve	 step:	 Show	 a	 pbt	 of	 height	 k+1	 has	 at	 most	 2k+1	 leaves.	
	

By	 the	 IHOP,	 we	 know	 that	 a	 pbt	 of	 height	 k	 has	 at	 most	 2k.	 	 A	 pbt	 of	
height	 k+1	 is	 a	 pbt	 of	 height	 k	 in	 which	 one	 or	 more	 leaves	 has	 2	 children.	
So	 the	 number	 of	 leaves	 in	 a	 pbt	 of	 height	 2k+1	 	 is	 at	 most	 2(2k)	 =	 2k+1	 	 	
QED	

The Decision Tree Model
Given any comparison-based sorting algorithm, we can represent
its behavior on an input of size n by a decision tree – a proper binary
tree.

A decision tree is a binary tree such that

•  each internal node in the decision tree corresponds to one of the
 comparisons in the algorithm.

•  each node represents a comparison of 2 values (e.g., x : y) s.t.
 - if x ≤ y, take left branch, else if x > y, take right branch.

•  each leaf in the decision tree represents one possible ordering of
 the input.

 ⇒ One decision tree exists for each algorithm and input size

The Decision Tree Model
Example: decision tree with n = 3, with elements A[1..3] has 3! = 6 leaves
containing 3 numbers sorted in ascending order.

A[1]	 vs	 A[2]	

A[2]	 vs	 A[3]	 A[1]	 vs	 A[3]	

A[1]	 vs	 A[3]	 A[2]	 vs	 A[3]	 A[1],	 A[2],	 A[3]	

A[1],	 A[3],	 A[2]	 A[3],	 A[1],	 A[2]	

A[2],	 A[1],	 A[3]	

A[2],	 A[3],	 A[1]	 A[3],	 A[2],	 A[1]	

≤	

≤	

≤	

≤	

≤	

>	

>	

>	

>	

>	

Let the length of the longest root to leaf path in this tree be h

 = worst-case number of comparisons

 ≤ worst-case number of operations of algorithm
 (since other operations only make the algorithm run longer)

2/17/20	

2	

The	 Ω(nlgn)	 Lower	 Bound	 	
Theorem: Any decision tree for sorting n elements has height Ω(nlgn)
(therefore, any comparison-based sorting algorithm requires Ω(nlgn)
comparisons in worst case).

Proof: Let h be the height of the tree. Then we know
•  the tree has at least (≥) n! leaves
•  the tree is binary, so it has at most (≤) 2h leaves

of leaves is upper bounded by 2h and lower bounded by n!

2h ≥ number of leaves ≥ n!
so we have:

 2h ≥ n!
taking lg of both sides:

 lg(2h) ≥ lg(n!)

 h ≥ Ω(nlgn) (Eq. 3.18) ¨

Optimal Sorting Algorithms
•  This lower bound proof tells us that heap-sort and

merge-sort are asymptotically optimal comparison-
based sorting algorithms.  

•  Randomized-Quick-Sort is asymptotically optimal with
high probability.

•  insertion-sort, selection-sort, and bubble-sort are not
asymptotically optimal comparison-based algorithms.

 

