Lower Bounds for Comparison-Based Sorting Algorithms (Ch. 8)

We have seen several sorting algorithms that run in $\Omega(nlgn)$ time in the worst case (meaning there is some input on which the algorithms run in at least $\Omega(nlgn)$ time).

- mergesort
- heapsort
- quicksort

In all comparison-based sorting algorithms, the sorted order results only from comparisons between input elements.

Is it possible for any comparison-based sorting algorithm to do better?

Lower Bounds for Sorting Algorithms

Theorem: Any comparison-based sort must make $\Omega(nlgn)$ comparisons in the worst case to sort a sequence of n elements. (Across all comparison-based sorting algorithms, no worst case runs faster than nlgn time.)

But how do we prove this?

We'll use the *decision tree model* to represent any sorting algorithm and then argue that no matter the algorithm, there is some input that will cause it to run in $\Omega(nlgn)$ time.

Question: How many ways are there to order n elements? n!

Binary tree

Recall that a binary tree is a tree data structure in which each node has at most 2 children, a left child and a right child.

Sources differ, but most authors agree that a full or proper binary tree is one in which every node has 0 or 2 children.

Binary tree height and upper bound on number of leaves

The *height* of a node x is the maximum number of edges on a path from a leaf to x.

Theorem: A proper binary tree (pbt) of height h has at most 2^h leaves.

Basis: a pbt of height 0 has 2⁰ = 1 leaf

Inductive hypothesis: a pbt of height $k \ge 1$ has at most 2^k leaves.

Inductive step: Show a pbt of height k+1 has at most 2^{k+1} leaves.

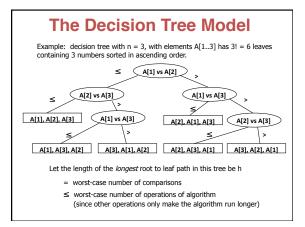
By the IHOP, we know that a pbt of height k has at most 2^k. A pbt of height k+1 is a pbt of height k in which one or more leaves has 2 children. So the number of leaves in a pbt of height 2^{k+1} is at most 2(2^k) = 2^{k+1} QED

The Decision Tree Model

Given any comparison-based sorting algorithm, we can represent its behavior on an input of size n by a decision tree – a proper binary tree.

A decision tree is a binary tree such that

- each internal node in the decision tree corresponds to one of the comparisons in the algorithm.
- each node represents a comparison of 2 values (e.g., x : y) s.t.
 if x ≤ y, take left branch, else if x > y, take right branch.
- each leaf in the decision tree represents one possible ordering of the input.
- \Rightarrow One decision tree exists for each algorithm and input size



The $\Omega(n \lg n)$ Lower Bound

Theorem: Any decision tree for sorting n elements has height $\Omega(nlgn)$ (therefore, any comparison-based sorting algorithm requires $\Omega(nlgn)$ comparisons in worst case).

Proof: Let h be the height of the tree. Then we know
the tree has at least (≥) n! leaves
the tree is binary, so it has at most (≤) 2^h leaves

of leaves is upper bounded by 2^{h} and lower bounded by n! $2^{h} \ge number$ of leaves $\ge n!$ so we have: $2^{h} \ge n!$ taking lg of both sides:

 $\begin{array}{rcl} lg(2^h) \geq & lg(n!) \\ h & \geq & \Omega(nlgn) \ (Eq. \ 3.18) & \Box \end{array}$

Optimal Sorting Algorithms

- This lower bound proof tells us that heap-sort and merge-sort are asymptotically optimal comparisonbased sorting algorithms.
- Randomized-Quick-Sort is asymptotically optimal with high probability.
- insertion-sort, selection-sort, and bubble-sort are not asymptotically optimal comparison-based algorithms.