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CMPU241	  Analysis	  of	  Algorithms	  

	  
Heapsort	  (chapter	  6)	  

Sor?ng	  Algorithm	  Terminology	  
•  A sorting algorithm is comparison-based if the only operation we 

can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of 
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort     n2 
     n2           n 
       yes

Merge Sort 
    nlgn          nlgn        nlgn   
no

Heap Sort        nlgn          nlgn        nlgn          yes

Quick Sort        n2           nlgn        nlgn           yes


  worst-case average-case best-case      in place?

Binary	  Trees	  
binary tree
•  A rooted tree in which 

each internal node has 
at most 2 children

complete binary tree
•  Each level of the binary 

tree is full except possibly 
the lowest.  All nodes on 
lowest level are as far left 
as possible (ie, tree is left 
filled).

Binary	  Trees	  
full binary tree
•  A binary tree in which 

every internal node has 
2 children (aka proper 
binary tree).

full and complete binary tree
•  Each level of the binary 

tree is full.

Binary	  Heaps	  

heap 
•  A data structure used to efficiently find the largest or 

smallest element in a set.

•  Each node contains a key and the keys are some  
totally ordered, comparable type of data.  

Binary	  Heaps	  

binary heap 
•  A binary heap is a complete binary tree, i.e., it may be 

missing some rightmost leaves on the bottom level. 
The bottom level is left-filled.
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Binary	  Heaps	  

Heap implementation is an array-embedded binary tree 
•  Encoding stores tree elements at particular indexes in an 

array.   

•  Uses "level-ordering" and 1-based indexing (our textbook).

1	  
2	   3	  

4	   5	   6	   7	  
8	   9	  

Heapsort	  
In an array-embedded implementation of a heap:
•  heapsize is number of elements in heap
•  length is number of positions in array

§  Invariant: length  ≥  heapsize.

1	  
2	   3	  

4	   5	   6	   7	  

8	   9	   10	   11	  

Max-Heap

Max-heap invariant:  A[Parent(i)] > A[i]

In the 1-based array representation of a max-heap, the root of 
the tree is in A[1], and given the index i of a node, 

Parent(i) LeftChild(i) RightChild(i)
return (⎣i/2⎦)             return (2i)                 return (2i + 1)

1     2    3    4    5    6    7   8   9  10  11  : index
20  18    9   11  10   7    1    2   4    5   3 : keys

20

18  9

11 10  7  1
 2  4  5  3

1

2 3

4

8 9

765

11 10

n = 11
height of heap A = 3

A

Heap-sort is 
accomplished 
with a max-heap

0-Based Max-Heap

Max-heap invariant:  A[Parent(i)] > A[i]

In the 0-based array representation of a max-heap, the root of 
the tree is in A[0], and given the index i of a node, 

Parent(i) LeftChild(i) RightChild(i)
return (⎣(i -1)/2⎦)       return (2i +1)            return (2i + 2)

0    1     2    3    4   5   6    7   8   9   10  : index
20  18    9   11  10   7    1    2   4    5   3 : keys

20

18  9

11 10  7  1
 2  4  5  3

0

1 2

3

7 8

654

10  9

n = 11
height of heap A = 3

A

Min-‐Heap	  

Min-heap invariant:  A[Parent(i)] < A[i]

In the 1-based array representation of a min-heap, the root of 
the tree is in A[1], and given the index i of a node, 

Parent(i) LeftChild(i) RightChild(i)
return (⎣i/2⎦)              return (2i)                return (2i + 1)

 2     3      5     4    6     9   11  10  15  20  18
1     2     3     4     5    6    7    8    9  10   11     :  index

:  keys

2

 3   5

 4   6  9  11

10  15 20 18

1

2 3

4

8 9

765

1110

A

Min-heaps are 
used, e.g., as 
priority queues 
in event-driven 
simulators.

Crea?ng	  a	  Heap:	  Build-‐Max-‐Heap	  
•  Starting from an unordered array of n elements. 
 
•  Observation: Leaves are already trivial max-heaps.   

 Elements A[(⎣n/2⎦ + 1) ... n] are all leaves. 
 

•  Start at parents of leaves...then go to grandparents of 
leaves...moving larger values up the tree and moving lower 
values down in the tree. 

Build-Max-Heap(A)             
1.  for i = ⎣A.length/2⎦ downto 1
2.      Max-Heapify(A, i)

Running Time of Build-Max-Heap 
•  About n/2 calls to Max-Heapify  (O(n) calls) 
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Max-Heapify:  Maintaining the Max-Heap Property

Max-Heapify(A, i)     /*  Max-Heapify is also known as "Sink"  */                                                    
1.  left = 2i ; right = 2i + 1                    
2.   largest = i          /* set largest to i, parent node of left and right */                                      
3.   if left ≤ A.heapsize and A[left] > A[i] 
4.       largest = left   /* reset largest to left child 
5.   if right ≤ A.heapsize and A[right] > A[largest] 
6.    largest = right /* reset largest to right child */ 
7.   if  largest != i      /* keep sinking i in tree */ 
8.        swap(A[i], A[largest]) 
9.        Max-Heapify(A, largest)   /* continue heapifying toward leaves */ 

Precondition: the subtrees rooted at 2i and 2i+1 are max-heaps 

Sink:  Alternate version of Max-Heapify
Create variables with global scope: 
 
          int heapsize; 
          E[] array =  (E[]) new Object[length]; 

Sink	  compares	  (possibly	  smaller)	  parent	  i	  to	  (possibly	  larger)	  le?	  	  
and	  right	  children	  and	  swaps	  key	  of	  child	  with	  largest	  key	  with	  	  
parent.	  	  Correctness	  relies	  on	  the	  precondiFon	  that	  the	  le?	  and	  	  
right	  children	  are	  the	  roots	  of	  max-‐heaps.	  
	  
Assume	  size	  >>	  heapsize	  and	  heapsize	  is	  highest-‐numbered	  node	  
in	  heap.	  

private void sink(int  k) 
{     
   while (2*k <= n) 
   { 
      int  j = 2*k; 
      if ( j < n  &&  less( j,  j+1)) j++; 
      if ( !less( k,  j )) break; 
      swap( k, j ); 
      k = j; 
   } 
} 

Precondition: the subtrees 2i and 2i+1, are max-heaps.  Let n = heapsize 

private boolean less(int  i, int j) 
{     
   return A[i].compareTo(A[j]) < 0; 
} 

private void swap(int  i, int j) 
{     
    int t = A[i]; 
    A[i] = A[j]; 
    A[j] = t; 
} 

Sink:  Iterative version of Max-Heapify Max-Heapify:  Maintaining the Max-Heap Property
 
•  Precondition:  subtrees rooted at the left and right children of A[i],  

A[2i] and A[2i + 1] are max-heaps (i.e., they obey the max-heap 
property)  
 
...but subtree rooted at A[i] might not be a max-heap (that is, A[i] may 
be smaller than its left and/or right child) 

 

•  Postcondition: Max-Heapify will cause the value at A[i] to "float down" 
or "sink" in the heap until the subtree rooted at A[i] becomes a heap. 
 

In a totally unordered array, execution would start at the highest numbered 
parent node of a leaf. 

Max-Heapify:  Running Time
Running Time of Max-Heapify 

•  every line is θ(1) time except the recursive call 

•  in worst-case, last level of binary tree is half empty, so the 
sub-tree rooted at left child has size < (2/3)n 

We get the recurrence     T(n) ≤ T(2n/3) + θ(1) 

which, by case 2 of the master theorem, has the solution 

                   T(n) = O(lgn) 

(or, Max-Heapify takes O(h) time when node A[i] has height h 
in the heap)  The height h of the tree is the root to leaf path 
with the most edges.     O(h) = O(lgn) 

Proposition 1: 
 

Sink-based heap construction uses fewer than 2n compares 
and fewer than n exchanges to construct a heap from n items. 
 
 

Proof sketch: 
 

Follows from the observation that most of the heaps processed 
are small.  E.g., to build a heap of 127 items, we process 32 
heaps of size 3, 16 heaps of size 7, 8 heaps of size 15, 4 heaps 
of size 31, 2 heaps of size 63, and 1 heap of size 127.  Thus, 
there are 32X1 + 16X2 + 8X3 + 4X4 + 2X5 + 1X6 = 120 
exchanges (and twice as many compares) required (at worst). 
 
 

Build-‐Max-‐Heap	  -‐	  Tighter	  bound	  



2/15/20

4

Inserting Heap Elements

Max-Heap-Insert(A, key)   
1. A.heapsize = A.heapsize +1              
2. i = A.heapsize 
3. while i  > 1 and A[parent(i)] < key     
4.        A[i] = A[parent(i)]
5.         i = parent(i)
6. A[i] = key

Inserting an element into a max-heap:
•  increment heapsize and "add" new element to the highest numbered 

position of array
•  walk up tree from new leaf to root, swapping values.  Insert input key at 

node in which a parent key larger than the input key is found

Running time of Max-Heap-Insert:  O(lgn)
•  time to traverse leaf to root path (height = O(lgn))

Here, values are 
floated up to 
where they 
should be in a 
max-heap.

Precondition:
A is a max-heap

private void swim(int  k) 
{     
   while (k > 1 && less(k/2, k)) 
   // k != root and k > parent 
   { 
      swap( k, k/2 ); 
      k = k/2; // set k to parent 
   } 
} 

Precondition: the key is inserted into what is initially a max-heap at the 
position A[heapsize++] and then swim is called with k = heapsize.   
 

private boolean less(int  i, int j) 
{     
   return A[i].compareTo(A[j]) < 0; 
} 

private void swap(int  i, int j) 
{     
    int t = A[i]; 
    A[i] = A[j]; 
    A[j] = t; 
} 

Swim:  another version of Max-Heap-Insert

This	  algorithm	  uses	  a	  1-‐based	  
array	  

Correctness of Build-Max-Heap
Loop invariant:  At the start of each iteration i of the for loop, each node 
i + 1, i + 2, ..., n is the root of a max-heap.

•  Initialization:  i = ⎣n/2⎦.  Each node ⎣n/2⎦ + 1, ⎣n/2⎦ + 2, ... n is a leaf, 
trivially satisfying the max-heap property. 

•  Inductive hypothesis: At the start of iteration k (1 ≤ k ≤ ⎣n/2⎦), the 
subtrees of k are the roots of max-heaps 

•  Inductive step (maintenance): During iteration k, Max-Heapify is called 
on node k. By the IH, the left and right subtrees of k are max-heaps. 
When Max-Heapify is called on node k, the value in node k is “floated 
down” in its subtree until its value is correctly positioned in the max-heap 
rooted at k. 

Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i = ⎣A.length/2⎦ downto 1
3.  Max-Heapify(A, i)

Correctness of Build-Max-Heap
Termination: at termination, i = 0.  By the loop invariant, 
nodes 1, 2, ...,n are the roots of max-heaps.  Therefore the 
algorithm is correct because it produces a max-heap.

Build-Max-Heap(A)
1. A.heapsize = A.length              
2. for i = ⎣A.length/2⎦ downto 1
3.  Max-Heapify(A, i)

Loop invariant:  At the start of each iteration i of the for 
loop, each node i + 1, i + 2, ..., n is the root of a max-
heap.

Heap Sort

HeapSort(A)
1. Build-Max-Heap(A)   /* rearrange elements to form max heap */
2. for i = A.length downto 2 do 
3.     swap A[1] and A[i]      /* puts max in ith array position */
4.    A.heapSize =  A.heapSize – 1       /* decrease heap size */
5.     Max-Heapify(A,1) /* restore heap property from node 1 */            

 

Input:    An n-element array A (unsorted).
Output: An n-element array A in sorted order, smallest to largest.

Build-Max-Heap(A) takes 
       O(n) time 
      
Max-Heapify(A,1) takes 
        O(lgn) time

Running time of HeapSort
•   1 call to Build-Max-Heap()
    ⇒  O(n) time
•   n-1 calls to Max-Heapify()
   each takes O(lgn) time
    ⇒  O(nlgn) time

Iterative version of Heap Sort

public static void sort(Comparable[] A)
{ 
   int n = A.length ;
   // start at highest numbered parent node
   for (int k = n/2; k >= 1; k--)
        sink(A, k, n);
   while (n > 1)
   {
      swap(A, 1, n--);
      sink(A, 1, n);
   }
}

Input:    An n-element array A (unsorted).
Output: An n-element array A in sorted order, smallest to largest.

private void sink(int  k) 
{     
   while (2*k <= N) 
   { 
      int j = 2*k; 
      if (j < N && less(j, j+1)) j++; 
      if (!less(k, j)) break; 
      exch(k, j); 
      k = j; 
   } 
} 
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Iterative version of Heap Sort

public static void sort(Comparable[] A)
{ 
   int n = A.length ;
   // start at highest numbered parent node
   for (int k = n/2; k >= 1; k--)
        sink(A, k, n);
   while (n > 1)
   {
      swap(A, 1, n--);
      sink(A, 1, n);
   }
}

Input:    An n-element array A (unsorted).
Output: An n-element array A in sorted order, smallest to largest.

Running time of sort
•   for loop iterates n/2 times.    
   calls sink on every iteration
    ⇒  O(nlgn) time
•   while loop has n-1 calls to sink()
   each takes O(lgn) time
    ⇒  O(nlgn) time

Heapsort Time and Space Usage

•  An array implementation of a heap uses O(n) space
- one array element for each node in heap

•  Heapsort uses O(n) space and is in place, meaning at 
most constant extra space beyond that taken by the 
input is needed

•  Running time is as good as merge sort, O(nlgn) in worst 
case.

Heaps as Priority Queues
     Definition:  A priority queue is a data structure for maintaining a set S of 

elements, each with an associated key.  A max-heap gives priority to keys 
with larger values and supports the following operations:

1.  insert(A, x) inserts the element x into array at next highest position in A. 

2.  max(A) returns value of element A with largest key. 

3.  extract-max(A) removes and returns element of A with largest key.  

4.  increase-key(A,x,k) increases the value of element x's key to new 
     value k (assuming k is at least as large as current key's value).

Priority Queues

Initialize PQ by running Build-Max-Heap on an array A.   
 

A[1] holds the maximum value after this step.   
 

Heap-Maximum(A)    - returns value of A[1] (does nothing to heap). 
Heap-Extract-Max(A) - Saves A[1] and then, like Heap-Sort, puts item in     
            A[heapsize] at A[1], decrements heapsize, and  

           uses Max-Heapify(A, 1) to restore heap property.  

An application of max-priority queues is to schedule jobs on a shared 
processor.  Need to be able to 
    check current job's priority   Heap-Maximum(A)
    remove job from the queue   Heap-Extract-Max(A)
    insert new jobs into queue    Max-Heap-Insert(A, key)
    increase priority of jobs    Heap-Increase-Key(A,i,key)

Heap-Increase-Key
Heap-Increase-Key(A, i, key) - If key is larger than current 
key at A[i], moves new value in A[i] up heap until heap 
property is restored. 
 
An application for a min-heap priority queue is an event-
driven simulator, where the key is an integer representing the 
number of seconds (or other discrete time unit) from time 
zero (starting point for simulation). 

Sor?ng	  Algorithms	  
•  A sorting algorithm is comparison-based if the only operation we 

can perform on keys is to compare them. 

•  A sorting algorithm is in place if only a constant number of 
elements of the input array are ever stored outside the array.

Running Time of Comparison-Based Sorting Algorithms

Insertion Sort     n2 
     n2           n 
       yes

Merge Sort 
    nlgn          nlgn        nlgn   
no

Heap Sort        nlgn          nlgn        nlgn          yes

Quick Sort        n2           nlgn        nlgn           yes


  worst-case average-case best-case      in place?
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Build-‐Max-‐Heap	  -‐	  Tighter	  bound	  
Build-‐Max-‐Heap(A)	  
1.	  A.heapsize	  =	  A.length	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2.	  for	  i	  ←	  ⎣length(A)/2⎦	  downto	  1	  
3.	  	   	  	  Max-‐Heapify(A,	  i)	  

Proof of tighter bound (O(n)) relies on following theorem:  
 

Theorem 1:  The number of nodes at height h in a max-
heap ≤ ⎡n/2h+1⎤  
 
  Height of a node v = longest distance from v to a leaf. 
  Depth of a node v = distance from node v to the root. 
 
Tight analysis relies on the properties that an n-node heap has height floor 
of lgn and at most the ceiling of n/2h+1 nodes at height h.  The time for 
max-heapify to run at a node varies with the height of the node in the tree, 
and the heights of most nodes are small. 

 

Lemma 1:  The number of internal nodes in a proper 
binary tree is equal to the number of leaves in the   
tree - 1. 
 

Defn:  In a proper binary tree (pbt), each node has exactly 0 or 2 children. 
 
Let I be the number of internal nodes and let L be the number of leaves in 
a proper binary tree T.  The proof is by induction on the height of T. 
 
Basis:  h=0. I  = 0 and L  = 1.  I  = L  - 1 = 1 - 1 = 0, so the lemma holds. 
 
Inductive Step:  Assume lemma is true for proper binary trees of height h 
(IHOP) and show for proper binary trees of height h + 1. 
 
Consider the root of a proper binary tree T of height h+1.  It has left and 
right subtrees (L and R) of height at most h.   
IT = (IL + IR) + 1 = (LL - 1) + (LR - 1) + 1 (by the IHOP) =  
(LL + LR -2) + 1 = LL + LR -1.  Since LT = LL + LR we have that IT = LT - 1. 
QED 

T	  

T1	   T2	  

#Internal	  nodes	  in	  T	  	  	  	  	  	  	  	  =	  	  	  	  	  #Internal	  nodes	  in	  T1	  +	  #Internal	  nodes	  in	  T2	  +	  1	  
	   	  	  	  	  	  	  	  	  	  =	  	  	  	  	  (#Leaves	  in	  T1	  -‐	  1)	  +	  (#Leaves	  in	  T2	  -‐1)	  +	  1	  	  (IHOP)	  
	   	  	  	  	  	  	  	  	  	  =	  	  	  	  	  (#Leaves	  in	  T1	  +	  #Leaves	  in	  T2)	  -‐	  2	  +	  1	  
	   	  	  	  	  	  	  	  	  	  =	  	  	  	  	  #Leaves	  in	  T	  -‐	  1	  	  	  	  (by	  observaFon	  that	  #	  of	  
	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  leaves	  in	  T	  is	  equal	  to	  #	  	  
	   	   	  	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  leaves	  in	  its	  subtrees.)	  

Diagramma?c	  proof	  of	  Lemma	  1	  
Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤ 
 

Let H be the height of the heap.  Proof is by induction on h, the height of 
each node.  The number of nodes in the heap is n. 
 
Basis:  Show the theorem holds for nodes with h = 0.  The tree leaves 
(nodes at height 0) are at depth H. 
 
Let x be the number of nodes at depth H, that is, the number of leaves, 
assuming that the tree is a complete binary tree, i.e., that n = 2H+1 - 1 
 
Note that n - x is odd, because a complete binary tree has an odd number 
of internal nodes (1 less than a power of 2) and an even number of leaves 
=  2H 

Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤...(basis continued) 
 
We have that n is odd and x is even, so all leaves have siblings (all internal 
nodes have 2 children.)  By Lemma 1, the number of internal nodes = the 
number of leaves - 1. 
 
So n = # of nodes = # of leaves + # internal nodes = 2(# of leaves) - 1.  
Thus, the # of leaves = (n+1)/2 = ⎡n/20+1⎤ because n is odd. 
 
Thus, the number of leaves = ⎡n/20+1⎤ and the theorem holds for the base 
case. 
  

Theorem 1:  The number of nodes at level h in a max-
heap ≤ ⎡n/2h+1⎤ 
 
Inductive step:  Show that if thm 1 holds for height h-1, it holds for h. 
 
Let nh be the number of nodes at height h in the n-node tree T. 
 
Consider the tree T’ formed by removing the leaves of T.  It has n’ = n - n0 
nodes.  We know from the base case that n0 = ⎡n/2⎤ , so n’ = n - ⎡n/2⎤ =   
⎣n/2⎦. 
 
Note that each node at height h (e.g. 1) in T would be at height h-1 (e.g. 
0) if the leaves of the tree were removed--i.e., they are at height h-1 in T’.  
Letting n’h-1 denote the number of nodes at height h-1 in T’, we have nh = 
n’h-1  
 
nh = n’h-1 ≤ ⎡n’/2h⎤ (by the IHOP) = ⎡⎣n/2⎦/2h⎤ ≤ ⎡(n/2)/2h⎤ = ⎡n/2h+1⎤. 
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Since the time of Max-Heapify when called on a node of height h is O(h), 
the time of B-M-H is 
 
 
 
 
and since the last summation turns out to be a constant, the running time 
is O(n). 
 
Therefore, we can build a max-heap from an unordered array in linear 
time. 
 

€ 

n
2h+1

h= 0

lgn

∑ O(h) =O(n h
2hh= 0

lgn

∑ )


