
1/9/20

1

Medians and Order Statistics Ch. 9
Let A be a set containing n distinct unordered elements:

Definition: The ith order statistic is the ith smallest element, e.g.,

•  minimum = 1st order statistic
•  maximum = nth order statistic
•  median(s) = ⎣(n+1)/2⎦ and ⎡(n+1)/2⎤

Selection Problem: Find the ith order statistic for a given i
input: Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output: The element x∈ A that is larger than exactly (i - 1) elements of A

Medians and Order Statistics
Given a set of “n” numbers we can say that,
•  Mean: Average of the “n” numbers
•  Median: Having sorted the “n” numbers, the value

which lies in the middle of the list such that half the
numbers are higher than it and half the numbers are
lower than it.

The problem of finding the median can be generalized to
finding the kth smallest number where k = n/2.

Medians and Order Statistics
kth smallest number can be found using:

•  Scan Approach with a time complexity T(n) = kn

•  Sort Approach with a time complexity T(n) = nlogn

O(nlgn) solution to selection problem
Selection Problem: Find the ith order statistic for a given i
input: Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output: The element x ∈ A that is larger than exactly (i - 1) elements of A

NaiveSelection(A, i)
1. A' = FavoriteCBSort(A)
2. return A'[i]

Running Time:
O(nlgn) for comparison-based
sorting.
Can we do better???

Idea: Use an O(nlgn) comparison-
based sorting algorithm, such as
heapsort or mergesort. Then
return the ith element in the sorted
array.

Any ideas for an algorithm to find
the minimum?

Finding Minimum (or Maximum)

Is this the best possible time for finding the minimum?

Yes!

Why are n - 1 comparisons necessary?
•  Any algorithm that finds the minimum must compare all elements

with the "leader" (think of a tournament).
•  so...there must be at least n – 1 losers (and each loss requires a

comparison)
•  We must look at every key, otherwise the missed one may be the

minimum. Each look (except the first) requires a comparison.

Minimum(A)
1. lowest = A[1]
2. for i = 2 to n
3. lowest = min(lowest, A[i])

Running Time:
 - just scan input array
 - exactly n-1 comparisons

Finding Minimum & Maximum
What if we want to find both the minimum and maximum elements in a
set?

How many comparisons are necessary?
•  Plan A: find the minimum and maximum separately using n – 1

comparisons for min and n – 2 for max = 2n – 3 comparisons
Is it possible to do better? Yes!

l Plan B: Process elements in pairs. Compare pairs of elements from
the input first with each other and then compare the smaller to the
current min and the larger to the current max, changing current
values of max and/or min if necessary.  
Cost = at most 3 compares for every 2 elements.
Total cost = 3⎣n/2⎦.

1/9/20

2

FindMin&Max(A)
if length[A] % 2 == 0
 if A[1] > A[2]
 min = A[2]
 max = A[1]
 else
 min = A[1]
 max = A[2]
else // n % 2 == 1
 min=max=A[1]

Compare the rest of the
elements in pairs,
comparing only the
maximum element of each
pair with max and the
minimum element of each
pair with min

•  If	 n	 is	 even,	 there	 is	 1	 ini.al	
compare	 and	 then	 3(n-‐2)/2	
compares	 =	 3n/2	 –	 2	
	

•  If	 n	 is	 odd,	 there	 are	 3(n-‐1)/2	
compares	
	

•  In	 either	 case,	 the	 maximum	
number	 of	 compares	 is	 ≤	 3⎣n/2⎦	

Selection of ith-order statistic  
in (Expected) Linear Time

	

•  Randomized-‐Par..on	 first	 swaps	 A[r]	 with	 a	 random	 element	
of	 A	 and	 then	 proceeds	 as	 in	 Par..on.	

Randomized-‐Par..on(A,	 p,	 r)	
1.	 j	 ←	 Random(p,	 r)	
2.	 swap	 A[r]	 ↔	 A[j]	
3.	 return	 Par..on(A,	 p,	 r)	

Selection of ith-order statistic in  
(Expected) Linear Time

	
	

•  Randomized-‐Select	 returns	 the	 ith	 smallest	 element	 of	 A.	
	 -‐	 like	 Randomized-‐QuickSort,	 	
	 	 	 except	 we	 only	 need	 to	 make	 	
	 	 	 one	 of	 the	 recursive	 calls.	 	 	
	 	 	 Why?	

Randomized-‐Par..on(A,	 p,	 r)	
1.	 j	 ←	 Random(p,	 r)	
2.	 swap	 A[r]	 ↔	 A[j]	
3.	 return	 Par..on(A,	 p,	 r)	

Randomized-‐Select(A,	 p,	 r,	 i)	 	 	
1.	 if	 p	 ==	 r	 return	 A[p]	
2.	 q	 =	 Randomized-‐Par..on(A,	 p,	 r)	
3.	 k	 =	 q	 –	 p	 +	 1	
4.	 if	 i	 ==	 k	 return	 A[q]	
5.	 else	 if	 	 i	 <	 k	 	 return	 Randomized-‐Select(A,	 p,	 q-‐1,	 i)	 \\	 lower	 half	
6.	 else	 return	 Randomized-‐Select(A,	 q+1,	 r,	 i	 -‐	 k)	 \\	 upper	 half	

Running Time of Randomized-Select
	

•  Worst-‐case	 :	 unlucky	 with	 bad	 0	 :	 n	 -‐	 1	 par..ons.	
	 T(n)	 =	 T(n	 -‐	 1)	 +	 θ(n)	 =	 θ(n2)	 	
	 	 (same	 as	 for	 worst-‐case	 of	 QuickSort)	

•  Best-‐case	 :	 really	 lucky	 and	 quickly	 reduce	 subarrays	
	 T(n)	 =	 T(n/2)	 +	 	 θ(n)	 	 	 (what	 is	 running	 .me	 if	 we	 use	 the	
Master	 Theorem?)	 	

•  Average-‐case	 :	 like	 Quick-‐Sort,	 will	 be	 asympto.cally	 close	 to	
best-‐case.	

Selection in worst-case linear time
Key: Guarantee a "good" split when array is partitioned - will
 yield an algorithm that always runs in linear time.

Select(A, i) /* i is the ith order statistic. */
1.  divide input array A into groups of size 5 per group

2.  sort the groups of 5, picking the middle elements of each

group of 5 and putting each middle element into an array A'.

3.  call Select(A', i) to find m, the median of the ⎡n/5⎤ medians.

4.  partition A around m, splitting it into two arrays A[p, q-1]
and A[q+1, r] and returning q, the index of the split point

5.  if (i == q) return m
 else if (i < q) call Select on the part of A < q
 else if (i > q) call Select on the part of A > q

Selection in Linear Worst-Case Time
Modified version of Partition in line 4 of Select that takes as an extra
input parameter, the value of the element to partition around, m.

Partition(A, p, r, m)
1. i = p - 1
2. for j = p to r – 1
3. if A[j] ≤ m
4. i = i + 1
5. swap A[i] and A[j]
6. swap A[i+1] and A[m]
7. return i + 1

1/9/20

3

Selection in Linear Worst-Case Time

Example:

(2,5,9,19,24,54,5,87,9,10,44,32,18,13,2,4,23,
26,16,19,25,39,47,56,71) is a set of “n” numbers

Main idea: this algorithm guarantees that Partition causes a
"good" split, with at least a constant fraction of the n
elements <= x and a constant fraction > x.

 Start the analysis by getting a lower bound on the number
of elements that are greater or less than x, the median of
medians.

Selection in Linear Worst-Case Time
Step 1: Group numbers in sets of 5 (shown vertically)

Selection in Linear Worst-Case Time
Step 2: Find Median of each group

m

Selection in Linear Worst-Case Time
Step 3: Partition around m

3n/10 < m

3n/10 > m

Selection in Linear Worst-Case Time
Step 4: Call Select(A, i) recursively

7n/10

Selection in Linear Worst-Case Time
Main idea: this algorithm guarantees that Partition causes a "good" split,

with at least a constant fraction of the n elements <= m and a constant
fraction > m.

Start the analysis by getting a lower bound on the number of elements
that are greater than m, the median of medians.

Note:
•  At least 1/2 of the medians found in step 2 are greater than the median of

medians, m.  

•  Look at the groups containing medians greater than m. Each contributes
3 elements that are > m (the median of the group and the 2 elements in
the group greater than the group's median), except for 2 of the groups:
the group containing m (which has only 2 elements > m) and the group
with < 5 elements.

1/9/20

4

Selection in Linear Worst-Case Time
• Thus, we know that at least

 3(⎡1/2 ⎡n/5⎤⎤ - 2) ≥ 3n/10 - 6

elements are > m (Symmetrically, the number of elements
that are < m is at least 3n/10 - 6).

Therefore, when we call Select recursively in step 5, it is on
at most (7n/10) + 6 elements. Find this value by using

 10n/10 – (3n/10 – 6) = (7n/10) + 6

Running Time of Select
Running Time (each step):
1. O(n) (break into groups of 5)
2. O(n) (sorting 5 numbers and finding median is
 O(1) time)
3. T(⎡n/5⎤) (recursive call to find median of medians)
4. O(n) (partition is linear time)
5. T(7n/10 + 6) (maximum size of subproblem)

Therefore, we get the recurrence

 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n)

Running Time of Select

Solve this recurrence using a good guess. Guess T(n) ≤ cn
 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n)
 ≤ c⎡n/5⎤ + c(7n/10 + 6) + O(n)
 ≤ c((n/5) + 1) + 7cn/10 + 6c + O(n)
 = cn - (cn/10 - 7c) + O(n)

 ≤ cn
When n >= 80 (cn/10 -7c) is positive

Choosing big enough c makes O(n) + (cn/10 -7c) positive, so
last line holds. (Try c = 200)

