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Medians and Order Statistics Ch. 9
Let A be a set containing n distinct unordered elements: 
 
Definition:  The ith order statistic is the ith smallest element, e.g., 

•    minimum = 1st order statistic 
•    maximum = nth order statistic 
•    median(s) = ⎣(n+1)/2⎦  and ⎡(n+1)/2⎤  
 

Selection Problem:  Find the ith order statistic for a given i 
input:    Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n 
output:  The element x∈ A that is larger than exactly (i - 1) elements of A 

Medians and Order Statistics
Given a set of “n” numbers we can say that, 
•  Mean: Average of the “n” numbers 
•  Median: Having sorted the “n” numbers, the value 

which lies in the middle of the list such that half the 
numbers are higher than it and half the numbers are 
lower than it. 

 
The problem of finding the median can be generalized to 
finding the kth smallest number where k = n/2. 

Medians and Order Statistics
kth smallest number can be found using:  
 
•  Scan Approach with a time complexity T(n) = kn  

 
•  Sort Approach with a time complexity T(n) = nlogn  

O(nlgn) solution to selection problem
Selection Problem: Find the ith order statistic for a given i
input:    Set A of n (distinct) numbers, and a number i, 1≤ i ≤ n
output:  The element x ∈ A that is larger than exactly (i - 1) elements of A

NaiveSelection(A, i)
1. A' = FavoriteCBSort(A)              
2. return A'[i]

Running Time:
O(nlgn) for comparison-based 
sorting.
Can we do better???

Idea:  Use an O(nlgn) comparison-
based sorting algorithm, such as 
heapsort or mergesort. Then 
return the ith element in the sorted 
array.

Any ideas for an algorithm to find 
the minimum?

Finding Minimum (or Maximum)

Is this the best possible time for finding the minimum? 
 
Yes!

Why are n - 1 comparisons necessary?
•  Any algorithm that finds the minimum must compare all elements 

with the "leader" (think of a tournament).
•  so...there must be at least n – 1 losers (and each loss requires a 

comparison)
•  We must look at every key, otherwise the missed one may be the 

minimum.  Each look (except the first) requires a comparison.

Minimum(A)
1. lowest = A[1]              
2. for i = 2 to n 
3.       lowest = min(lowest, A[i])

Running Time:
 - just scan input array
 - exactly n-1 comparisons

Finding Minimum & Maximum
What if we want to find both the minimum and maximum elements in a 
set?

How many comparisons are necessary?
•  Plan A:  find the minimum and maximum separately using n – 1  

comparisons for min and n – 2 for max  =  2n – 3 comparisons
Is it possible to do better?  Yes! 

l Plan B: Process elements in pairs.  Compare pairs of elements from 
the input first with each other and then compare the smaller to the 
current min and the larger to the current max, changing current 
values of max and/or min if necessary.   
Cost = at most 3 compares for every 2 elements.
Total cost = 3⎣n/2⎦. 
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FindMin&Max(A)
if length[A] % 2 == 0
     if A[1] > A[2]
          min = A[2]
          max = A[1]
     else 
          min = A[1]
          max = A[2] 
else // n % 2 == 1
     min=max=A[1]

Compare the rest of the 
elements in pairs, 
comparing only the 
maximum element of each 
pair with max and the 
minimum element of each 
pair with min

•  If	  n	  is	  even,	  there	  is	  1	  ini.al	  
compare	  and	  then	  3(n-‐2)/2	  
compares	  =	  3n/2	  –	  2	  
	  

•  If	  n	  is	  odd,	  there	  are	  3(n-‐1)/2	  
compares	  
	  

•  In	  either	  case,	  the	  maximum	  
number	  of	  compares	  is	  ≤	  3⎣n/2⎦	  

Selection of ith-order statistic  
in (Expected) Linear Time

	  

•  Randomized-‐Par..on	  first	  swaps	  A[r]	  with	  a	  random	  element	  
of	  A	  and	  then	  proceeds	  as	  in	  Par..on.	  

Randomized-‐Par..on(A,	  p,	  r)	  
1.	  j	  ←	  Random(p,	  r)	  
2.	  swap	  A[r]	  ↔	  A[j]	  
3.	  return	  Par..on(A,	  p,	  r)	  

Selection of ith-order statistic in  
(Expected) Linear Time

	  
	  

•  Randomized-‐Select	  returns	  the	  ith	  smallest	  element	  of	  A.	  
	  -‐	  like	  Randomized-‐QuickSort,	  	  
	  	  	  except	  we	  only	  need	  to	  make	  	  
	  	  	  one	  of	  the	  recursive	  calls.	  	  	  
	  	  	  Why?	  

Randomized-‐Par..on(A,	  p,	  r)	  
1.	  j	  ←	  Random(p,	  r)	  
2.	  swap	  A[r]	  ↔	  A[j]	  
3.	  return	  Par..on(A,	  p,	  r)	  

Randomized-‐Select(A,	  p,	  r,	  i)	  	  	  
1.	  if	  p	  ==	  r	  return	  A[p]	  
2.	  q	  =	  Randomized-‐Par..on(A,	  p,	  r)	  
3.	  k	  =	  q	  –	  p	  +	  1	  
4.	  if	  i	  ==	  k	  return	  A[q]	  
5.	  else	  if	  	  i	  <	  k	  	  return	  Randomized-‐Select(A,	  p,	  q-‐1,	  i)	  \\	  lower	  half	  
6.	  else	  return	  Randomized-‐Select(A,	  q+1,	  r,	  i	  -‐	  k)	  \\	  upper	  half	  

Running Time of Randomized-Select
	  

•  Worst-‐case	  :	  unlucky	  with	  bad	  0	  :	  n	  -‐	  1	  par..ons.	  
	  T(n)	  =	  T(n	  -‐	  1)	  +	  θ(n)	  =	  θ(n2)	  	  
	   	  (same	  as	  for	  worst-‐case	  of	  QuickSort)	  

•  Best-‐case	  :	  really	  lucky	  and	  quickly	  reduce	  subarrays	  
	  T(n)	  =	  T(n/2)	  +	  	  θ(n)	  	  	  (what	  is	  running	  .me	  if	  we	  use	  the	  
Master	  Theorem?)	  	  

•  Average-‐case	  :	  like	  Quick-‐Sort,	  will	  be	  asympto.cally	  close	  to	  
best-‐case.	  

Selection in worst-case linear time
Key:  Guarantee a "good" split when array is partitioned - will    
         yield an algorithm that always runs in linear time.

Select(A, i)      /* i is the ith order statistic. */ 
1.  divide input array A into groups of size 5 per group  

 
2.  sort the groups of 5, picking the middle elements of each 

group of 5 and putting each middle element into an array A'. 
 

3.  call Select(A', i) to find m, the median of the ⎡n/5⎤ medians. 
 

4.  partition A around m, splitting it into two arrays A[p, q-1]  
and A[q+1, r] and returning q, the index of the split point 
 

5.  if (i == q) return m 
 else if (i < q) call Select on the part of A < q 
 else if (i > q) call Select on the part of A > q 

Selection in Linear Worst-Case Time
Modified version of Partition in line 4 of Select that takes as an extra 
input parameter, the value of the element to partition around, m.

Partition(A, p, r, m)
1. i = p - 1
2. for j = p to r – 1 
3.      if A[j] ≤ m
4.             i = i + 1
5.             swap A[i] and A[j]    
6. swap A[i+1] and  A[m]
7. return i + 1
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Selection in Linear Worst-Case Time

Example:  
 
(2,5,9,19,24,54,5,87,9,10,44,32,18,13,2,4,23, 
26,16,19,25,39,47,56,71) is a set of “n” numbers  

Main idea:  this algorithm guarantees that Partition causes a 
"good" split, with at least a constant fraction of the n 
elements <= x and a constant fraction > x. 

 
 Start the analysis by getting a lower bound on the number 
of elements that are greater or less than x, the median of 
medians. 

Selection in Linear Worst-Case Time
Step 1: Group numbers in sets of 5 (shown vertically)  

Selection in Linear Worst-Case Time
Step 2: Find Median of each group  

m 

Selection in Linear Worst-Case Time
Step 3: Partition around m  

3n/10 < m 

3n/10 > m 

Selection in Linear Worst-Case Time
Step 4: Call Select(A, i) recursively    

7n/10  

Selection in Linear Worst-Case Time
Main idea:  this algorithm guarantees that Partition causes a "good" split, 

with at least a constant fraction of the n elements <= m and a constant 
fraction > m.

Start the analysis by getting a lower bound on the number of elements 
that are greater than m, the median of medians.

Note:
•  At least 1/2 of the medians found in step 2 are greater than the median of 

medians, m.  

•  Look at the groups containing medians greater than m.  Each contributes 
3 elements that are > m (the median of the group and the 2 elements in 
the group greater than the group's median), except for 2 of the groups:  
the group containing m (which has only 2 elements > m) and the group 
with < 5 elements.  
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Selection in Linear Worst-Case Time
• Thus, we know that at least 
 
    3( ⎡1/2 ⎡n/5⎤⎤ - 2)  ≥  3n/10 - 6 

elements are > m (Symmetrically, the number of elements 
that are < m is at least 3n/10 - 6). 

Therefore, when we call Select recursively in step 5, it is on 
at most (7n/10) + 6 elements.  Find this value by using  

 
          10n/10 – (3n/10 – 6) = (7n/10) + 6 

Running Time of Select
Running Time (each step): 
1. O(n)              (break into groups of 5) 
2. O(n)              (sorting 5 numbers and finding median is     
                         O(1) time) 
3. T(⎡n/5⎤)         (recursive call to find median of medians) 
4. O(n)         (partition is linear time) 
5. T(7n/10 + 6)  (maximum size of subproblem) 
 
Therefore, we get the recurrence 
 

     T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n) 

Running Time of Select
 

Solve this recurrence using a good guess.  Guess T(n) ≤ cn 
 T(n) = T(⎡n/5⎤) + T(7n/10 + 6) + O(n) 
         ≤ c⎡n/5⎤ + c(7n/10 + 6) + O(n) 
         ≤ c((n/5) + 1) + 7cn/10 + 6c + O(n) 
         = cn - (cn/10 - 7c) + O(n) 

         ≤  cn    
When n >= 80 (cn/10 -7c) is positive 

Choosing big enough c makes O(n) + (cn/10 -7c) positive, so 
last line holds. (Try c = 200) 


