
CMPU 241 - Analysis of Algorithms
Spring 2019

Practice Problem Set 1
You are encouraged to solve this problem set, but these problems will not be graded.

PS-1 Rank the following functions in terms of low (left) to high (right) asymptotic growth rates. Partition
your list into equivalence classes such that functions f(n) and g(n) are in the same class (and sur-
rounded by []’s) if and only if f(n) = Θ(g(n)). Use commas to separate different equivalence classes.
If two or more functions have the same running time, group them with []’s and show the complexity
class that contains the functions.

For example, given the following sequence of functions: nlg2 n3 nlg4

nlg8

n2 , you should write the
rankings as follows:

nlg2 = Θ(n), [n2 = nlg4 = Θ(n2)], [n3 = nlg8 = Θ(n3)]

Rank the following functions:

n2 n! (3
2)n n3 lnn 100 2lgn en 4lgn n 2n nlgn lg∗n n2.33 3n lgn

PS-2 Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume that
T (n) is constant for n ≤ 2. Justify your answers.

a. T (n) = T (9n
10) + n

b. T (n) = 2T (n
4) +

√
n

c. T (n) = T (n− 1) + n

d. T (n) = 3T (n
2) + nlgn

e. T (n) = 6T (n
4) + n2

PS-3 (Problem 2.3-3) Use mathematical induction to show that when n is an exact power of 2, the solution
of the recurrence

T (n) =

{
2 if n = 2
2T (n

2) + n if n = 2k, for k > 1

is T (n) = nlgn.

PS-4 Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging
it with the number stored in A[1]. Then find the second smallest element of A, and exchange it with
A[2]. Continue in this manner for the first n − 1 elements of A. This algorithm, called Selection-
Sort, is given below. Assume the input and output are as specified for the sorting problem on page
16 of our textbook.

1

Selection-Sort(A):
1. n = A.length
2. for j = 1 to n− 1
3. smallest = j
4. for i = j + 1 to n
5. if A[i] < A[smallest]
6. smallest = i
7. exchange A[j] with A[smallest]

(a) Give a loop invariant for the Selection-Sort algorithm.

(b) Show that your algorithm is correct by giving a proof by induction (like that shown in class and
given in Chapter 2 of our textbook) on the number of iterations of the outer for loop.

2

