CMPU 241 - Analysis of Algorithms

Spring 2019

Practice Problem Set 1

You are encouraged to solve this problem set, but these problems will not be graded.
PS-1 Rank the following functions in terms of low (left) to high (right) asymptotic growth rates. Partition your list into equivalence classes such that functions $f(n)$ and $g(n)$ are in the same class (and surrounded by []'s) if and only if $f(n)=\Theta(g(n))$. Use commas to separate different equivalence classes. If two or more functions have the same running time, group them with []'s and show the complexity class that contains the functions.

For example, given the following sequence of functions: $n^{\lg 2} \quad n^{3} \quad n^{l^{4}} n^{\lg ^{8}} n^{2}$, you should write the rankings as follows:

$$
n^{\lg 2}=\Theta(n),\left[n^{2}=n^{\lg 4}=\Theta\left(n^{2}\right)\right],\left[n^{3}=n^{\lg 8}=\Theta\left(n^{3}\right)\right]
$$

Rank the following functions:

$$
\begin{array}{lllllllllllllll}
n^{2} & n! & \left(\frac{3}{2}\right)^{n} & n^{3} & \ln n & 100 & 2^{\lg n} & e^{n} & 4^{\lg n} & n & 2^{n} & n \lg n & \lg ^{*} n & n^{2.33} & 3^{n}
\end{array} \lg n
$$

PS-2 Give asymptotic upper and lower bounds for $T(n)$ in each of the following recurrences. Assume that $T(n)$ is constant for $n \leq 2$. Justify your answers.
a. $T(n)=T\left(\frac{9 n}{10}\right)+n$
b. $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}$
c. $T(n)=T(n-1)+n$
d. $T(n)=3 T\left(\frac{n}{2}\right)+n l g n$
e. $T(n)=6 T\left(\frac{n}{4}\right)+n^{2}$

PS-3 (Problem 2.3-3) Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence

$$
T(n)= \begin{cases}2 & \text { if } n=2 \\ 2 T\left(\frac{n}{2}\right)+n & \text { if } n=2^{k}, \text { for } k>1\end{cases}
$$

is $T(n)=n l g n$.

PS-4 Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the number stored in $A[1]$. Then find the second smallest element of A, and exchange it with $A[2]$. Continue in this manner for the first $n-1$ elements of A. This algorithm, called SelectionSort, is given below. Assume the input and output are as specified for the sorting problem on page 16 of our textbook.

Selection-Sort(A):

1. $n=$ A.length
2. for $j=1$ to $n-1$
3. \quad smallest $=j$
4. for $i=j+1$ to n
5. if $A[i]<A[$ smallest $]$
6. \quad smallest $=i$
7. exchange $A[j]$ with A [smallest]
(a) Give a loop invariant for the SELECtion-Sort algorithm.
(b) Show that your algorithm is correct by giving a proof by induction (like that shown in class and given in Chapter 2 of our textbook) on the number of iterations of the outer for loop.
