Comparing time complexity of algorithms

From Chapter 3, standard notation and common functions:

- When the base of a log is not mentioned, it is assumed to be base 2.
- Analogy between comparisons of functions f(n) and g(n) and comparisons of real numbers a and b:

$$\begin{array}{ll} f(n) = O(g(n)) & \text{is like} & a \leq b \\ f(n) = \Omega(g(n)) & \text{is like} & a \geq b \\ f(n) = \Theta(g(n)) & \text{is like} & a = b \\ f(n) = o(g(n)) & \text{is like} & a < b \\ f(n) = \omega(g(n)) & \text{is like} & a > b \end{array}$$

- A polynomial of degree d is $\Theta(n^d)$.
- For all real constants a and b such that a > 1, b > 0,

$$\lim_{x \to \infty} \frac{n^b}{a^n} = 0$$

so $n^b = o(a^n)$. Any exponential function with a base > 1 grows faster than any polynomial function.

• Notation used for common logarithms: $lgn = log_2n$ (binary logarithm) $lnn = log_en$ (natural logarithm)

• More logarithmic facts:

For all real a > 0, b > 0, c > 0, and n,

 $a = b^{(log_ba)}$ // Ex: $2^{(lgn)} = n^{(lg2)} = n$ $log_b a^n = nlog_b a$ $log_b x = y$ iff $x = b^y$ $log_b a = (log_c a)/(log_c b)$ // the base of the log doesn't matter asymptotically $a^{(log_bc)} = c^{(log_ba)}$

 $lg^bn = o(n^a)$ // any polynomial grows faster than any polylogarithm $n! = o(n^n)$ // factorial grows slower than n^n $n! = \omega(2^n)$ // factorial grows faster than exponential with base ≥ 2 $lg(n!) = \Theta(nlgn)$ // Stirling's rule • Iterated logarithm function:

 lg^*n (log star of n) $lg^{(i)}n$ is the log function applied i times in succession. $lg^*n = \min(i \ge 0 \text{ such that } lg^{(i)}n \le 1)$

x	lg^*x
$(-\infty,1]$	0
(1, 2]	1
(2, 4]	2
(4, 16]	3
(16, 65536]	4
$(65536, 2^{65536}]$	5
$lg^{*}2 = 1$	
$lg^*4 = 2$	
$lg^*16 = 3$	
$lg^*65536 = 4$	

Very slow-growing function.

COMPARING TIME COMPLEXITY OF FUNCTIONS:

Given 2 functions, which one grows faster (i.e. which one grows faster)?

- Tech 1: Factor sides by common terms n^2 and $n^3 //$ divide both sides by n^2 to get 1 and n clearly n grows faster than 1, so $n^2 = O(n^3)$
- Tech 2: Take log of both sides, then substitute very large values for n 2^n and n^2 $lg2^n = nlg2 = n(1) = n$ $lgn^2 = 2lgn$ substitute 2^{100} for n in checking n and 2lgn, we have $2^{100} > 2 * lg2^{100} = 200$ So $2^n = \Omega(n^2)$ Exponentials dominate polynomials.
- Tech 3: Take the limit as n goes to ∞ .

• (in class example); Rank the functions given below by decreasing order of growth; that is, find an arrangement g_1, g_2, g_3, g_4 of the functions satisfying $g_1 = \Omega(g_2) = \Omega(g_3) = \Omega(g_4)$.

$$g_1 = 2^n$$
 $g_2 = n^{\frac{3}{2}}$ $g_3 = nlgn$ $g_4 = n^{lgn}$

In the space below, list the functions given above in terms of decreasing running time (highest to lowest, left to right), as n increases to ∞ (justify your answers):

$$g_1 = \Omega(g_4) = \Omega(g_2) = \Omega(g_3)$$

Note: The explanations below are not proofs because we can't prove anything by example. But they do give us an idea of the relative values of each function as n gets very large. Also, the substitution of 2^{128} for n is an arbitrary choice that allows us to compare functions with a very large value of n.

- 1. Explanation for $g_1 = \Omega(g_2)$: Show $2^n = \Omega(n^{\frac{3}{2}})$: Take lg of both sides to get $lg2^n = nlg2 = n$ and $lgn^{\frac{3}{2}} = \frac{3}{2}lgn$. Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $\frac{3}{2}lg2^{128}$? We get $2^{128} > \frac{3}{2}lg2^{128}$ because $2^{128} \approx 3.4 * 10^{38} > \frac{3}{2}128 = 192$. Alternately, we could just use the observation that exponentials dominate polynomials for any base > 1.
- 2. Explanation for $g_1 = \Omega(g_3)$: Show $2^n = \Omega(nlgn)$: Take lg of both sides to get $lg2^n = nlg2 = n$ and lg(nlgn) = lgn + lglgn. Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $lg2^{128} + lglg2^{128}$? We get $2^{128} > 128 + lglg2^{128} = 128 + lg128 = 128 + 7$. So $g_1 = \Omega(g_3)$ because $2^{128} \approx 3.4 * 10^{38} > 135$.
- 3. Explanation for $g_1 = \Omega(g_4)$: Show $2^n = \Omega(n^{lgn})$: Take lg of both sides to get $lg2^n = nlg2 = n$ and $lg(n^{lgn}) = lgn * lgn$. Substitute large value for n: let $n = 2^{128}$. Then we are asking, which is bigger, 2^{128} or $lg2^{128} * lg2^{128}$? We get $2^{128} \ge 128 * 128 = 16384$ because $2^{128} \approx 3.4 * 10^{38} > 16384$.
- 4. Explanation for $g_4 = \Omega(g_2)$: Show $n^{lgn} = \Omega(n^{\frac{3}{2}})$: Take lg of both sides to get $lg(n^{lgn}) = lgn * lgn$ and $lg(n^{\frac{3}{2}}) = \frac{3}{2} * lgn$. We can cancel a factor of lgn on each side to get $lgn > \frac{3}{2}$, which is true because $\frac{3}{2}$

is a constant.

- 5. Explanation for $g_4 = \Omega(g_3)$: Show $n^{lgn} = \Omega(nlgn)$: Take lg of both sides to get $lg(n^{lgn}) = lgn * lgn$ and lg(nlgn) = lgn + lglgn. Substitute large value for n: let $n = 2^{128}$. Then $128 * 128 = 16384 > lg2^{128} + lglg2^{128} = 128 + 7 = 135$.
- 6. Explanation for $g_2 = \Omega(g_3)$: Show $(n^{\frac{3}{2}}) = \Omega(nlgn)$: Take lg of both sides to get $lgn^{\frac{3}{2}} = \frac{3}{2}lgn$ and lg(nlgn) = lgn + lglgn. Substitute large value for n: let $n = 2^{128}$. Then $\frac{3}{2}lg2^{128} = 192 > lg2^{128} + lglg2^{128} = 135$. Since 192 is not that much larger than 135, choose n^{1024} . Then $\frac{3}{2}lg2^{1024} = 1536 > 1024 + 10$.