
Comparing time complexity of algorithms

From Chapter 3, standard notation and common functions:

• When the base of a log is not mentioned, it is assumed to be base 2.

• Analogy between comparisons of functions f(n) and g(n) and comparisons of real num-
bers a and b:

f(n) = O(g(n)) is like a ≤ b
f(n) = Ω(g(n)) is like a ≥ b
f(n) = Θ(g(n)) is like a = b
f(n) = o(g(n)) is like a < b
f(n) = ω(g(n)) is like a > b

• A polynomial of degree d is Θ(nd).

• For all real constants a and b such that a > 1, b > 0,

lim
x→∞

nb

an
= 0

so nb = o(an). Any exponential function with a base > 1 grows faster than any poly-
nomial function.

• Notation used for common logarithms:
lgn = log2n (binary logarithm)
lnn = logen (natural logarithm)

• More logarithmic facts:
For all real a > 0, b > 0, c > 0, and n,

a = b(logba) // Ex: 2(lgn) = n(lg2) = n
logba

n = nlogba
logbx = y iff x = by

logba = (logca)/(logcb) // the base of the log doesn’t matter asymptotically
a(logbc) = c(logba)

lgbn = o(na) // any polynomial grows faster than any polylogarithm
n! = o(nn) // factorial grows slower than nn

n! = ω(2n) // factorial grows faster than exponential with base ≥ 2
lg(n!) = Θ(nlgn) // Stirling’s rule

1



• Iterated logarithm function:
lg∗n (log star of n)
lg(i)n is the log function applied i times in succession.
lg∗n = min(i ≥ 0 such that lg(i)n ≤ 1)

x lg∗x
(−∞, 1] 0
(1, 2] 1
(2, 4] 2
(4, 16] 3
(16, 65536] 4
(65536, 265536] 5

lg∗2 = 1
lg∗4 = 2
lg∗16 = 3
lg∗65536 = 4

Very slow-growing function.

COMPARING TIME COMPLEXITY OF FUNCTIONS:

Given 2 functions, which one grows faster (i.e. which one grows faster)?

Tech 1: Factor sides by common terms
n2 and n3 // divide both sides by n2 to get 1 and n
clearly n grows faster than 1, so n2 = O(n3)

Tech 2: Take log of both sides, then substitute very large values for n
2n and n2

lg2n = nlg2 = n(1) = n
lgn2 = 2lgn
substitute 2100 for n in checking n and 2lgn,
we have 2100 > 2 ∗ lg2100 = 200
So 2n = Ω(n2)
Exponentials dominate polynomials.

Tech 3: Take the limit as n goes to ∞.

2



• (in class example); Rank the functions given below by decreasing order of growth; that
is, find an arrangement g1, g2, g3, g4 of the functions satisfying g1 = Ω(g2) = Ω(g3) =
Ω(g4).

g1 = 2n g2 = n
3
2 g3 = nlgn g4 = nlgn

In the space below, list the functions given above in terms of decreasing running time
(highest to lowest, left to right), as n increases to ∞ (justify your answers):

g1 = Ω(g4) = Ω(g2) = Ω(g3)

Note: The explanations below are not proofs because we can’t prove anything by ex-
ample. But they do give us an idea of the relative values of each function as n gets
very large. Also, the substitution of 2128 for n is an arbitrary choice that allows us to
compare functions with a very large value of n.

1. Explanation for g1 = Ω(g2):

Show 2n = Ω(n
3
2 ):

Take lg of both sides to get lg2n = nlg2 = n and lgn
3
2 = 3

2
lgn.

Substitute large value for n: let n = 2128. Then we are asking, which is bigger, 2128

or 3
2
lg2128? We get 2128 > 3

2
lg2128 because 2128 ≈ 3.4 ∗ 1038 > 3

2
128 = 192.

Alternately, we could just use the observation that exponentials dominate polyno-
mials for any base > 1.

2. Explanation for g1 = Ω(g3):
Show 2n = Ω(nlgn):
Take lg of both sides to get lg2n = nlg2 = n and lg(nlgn) = lgn + lglgn.
Substitute large value for n: let n = 2128. Then we are asking, which is bigger, 2128

or lg2128 + lglg2128? We get 2128 > 128 + lglg2128 = 128 + lg128 = 128 + 7. So
g1 = Ω(g3) because 2128 ≈ 3.4 ∗ 1038 > 135.

3. Explanation for g1 = Ω(g4):
Show 2n = Ω(nlgn):
Take lg of both sides to get lg2n = nlg2 = n and lg(nlgn) = lgn ∗ lgn.
Substitute large value for n: let n = 2128. Then we are asking, which is bigger, 2128

or lg2128∗lg2128? We get 2128 ≥ 128∗128 = 16384 because 2128 ≈ 3.4∗1038 > 16384.

4. Explanation for g4 = Ω(g2):

Show nlgn = Ω(n
3
2 ):

Take lg of both sides to get lg(nlgn) = lgn ∗ lgn and lg(n
3
2 ) = 3

2
∗ lgn.

We can cancel a factor of lgn on each side to get lgn > 3
2
, which is true because 3

2

3



is a constant.

5. Explanation for g4 = Ω(g3):
Show nlgn = Ω(nlgn):
Take lg of both sides to get lg(nlgn) = lgn ∗ lgn and lg(nlgn) = lgn + lglgn.
Substitute large value for n: let n = 2128. Then 128 ∗ 128 = 16384 > lg2128 +
lglg2128 = 128 + 7 = 135.

6. Explanation for g2 = Ω(g3):

Show (n
3
2 ) = Ω(nlgn):

Take lg of both sides to get lgn
3
2 = 3

2
lgn and lg(nlgn) = lgn + lglgn.

Substitute large value for n: let n = 2128. Then 3
2
lg2128 = 192 > lg2128 + lglg2128 =

135. Since 192 is not that much larger than 135, choose n1024. Then 3
2
lg21024 =

1536 > 1024 + 10.

4


