Comparing time complexity of algorithms

From Chapter 3, standard notation and common functions:

- When the base of a \log is not mentioned, it is assumed to be base 2 .
- Analogy between comparisons of functions $f(n)$ and $g(n)$ and comparisons of real numbers a and b:

$$
\begin{array}{lll}
f(n)=O(g(n)) & \text { is like } & a \leq b \\
f(n)=\Omega(g(n)) & \text { is like } & a \geq b \\
f(n)=\Theta(g(n)) & \text { is like } & a=b \\
f(n)=o(g(n)) & \text { is like } & a<b \\
f(n)=\omega(g(n)) & \text { is like } & a>b
\end{array}
$$

- A polynomial of degree d is $\Theta\left(n^{d}\right)$.
- For all real constants a and b such that $a>1, b>0$,

$$
\lim _{x \rightarrow \infty} \frac{n^{b}}{a^{n}}=0
$$

so $n^{b}=o\left(a^{n}\right)$. Any exponential function with a base >1 grows faster than any polynomial function.

- Notation used for common logarithms:
$\lg n=\log _{2} n$ (binary logarithm)
$\ln n=\log _{e} n$ (natural logarithm)

- More logarithmic facts:

For all real $a>0, b>0, c>0$, and n ,

```
\(a=b^{\left(\log _{b} a\right)} \quad / / \mathrm{Ex}: 2^{(\operatorname{lgn})}=n^{(l g 2)}=n\)
\(\log _{b} a^{n}=n \log _{b} a\)
\(\log _{b} x=y\) iff \(x=b^{y}\)
\(\log _{b} a=\left(\log _{c} a\right) /\left(\log _{c} b\right) / /\) the base of the \(\log\) doesn't matter asymptotically
\(a^{\left(\log _{b} c\right)}=c^{\left(\log _{b} a\right)}\)
```

$l g^{b} n=o\left(n^{a}\right) \quad / /$ any polynomial grows faster than any polylogarithm
$n!=o\left(n^{n}\right) \quad / /$ factorial grows slower than n^{n}
$n!=\omega\left(2^{n}\right) \quad / /$ factorial grows faster than exponential with base ≥ 2
$\lg (n!)=\Theta(n l g n) \quad / /$ Stirling's rule

- Iterated logarithm function:
$l^{*} n(\log$ star of n$)$
$l g^{(i)} n$ is the log function applied i times in succession.
$l g^{*} n=\min \left(i \geq 0\right.$ such that $\left.l g^{(i)} n \leq 1\right)$

x	$l g^{*} x$
$(-\infty, 1]$	0
$(1,2]$	1
$(2,4]$	2
$(4,16]$	3
$(16,65536]$	4
$\left(65536,2^{65536}\right]$	5

$l g^{*} 2=1$
$l g^{*} 4=2$
$l g^{*} 16=3$
$l g^{*} 65536=4$

Very slow-growing function.

COMPARING TIME COMPLEXITY OF FUNCTIONS:

Given 2 functions, which one grows faster (i.e. which one grows faster)?
Tech 1: Factor sides by common terms
n^{2} and $n^{3} / /$ divide both sides by n^{2} to get 1 and n clearly n grows faster than 1 , so $n^{2}=\mathcal{O}\left(n^{3}\right)$

Tech 2: Take log of both sides, then substitute very large values for n
2^{n} and n^{2}
$\lg 2^{n}=n \lg 2=n(1)=n$
$\lg n^{2}=2 \lg n$
substitute 2^{100} for n in checking n and $2 l g n$,
we have $2^{100}>2 * \lg 2^{100}=200$
So $2^{n}=\Omega\left(n^{2}\right)$
Exponentials dominate polynomials.
Tech 3: Take the limit as n goes to ∞.

- (in class example); Rank the functions given below by decreasing order of growth; that is, find an arrangement $g_{1}, g_{2}, g_{3}, g_{4}$ of the functions satisfying $g_{1}=\Omega\left(g_{2}\right)=\Omega\left(g_{3}\right)=$ $\Omega\left(g_{4}\right)$.

$$
g_{1}=2^{n} \quad g_{2}=n^{\frac{3}{2}} \quad g_{3}=n l g n \quad g_{4}=n^{l g n}
$$

In the space below, list the functions given above in terms of decreasing running time (highest to lowest, left to right), as n increases to ∞ (justify your answers):

$$
g_{1}=\Omega\left(g_{4}\right)=\Omega\left(g_{2}\right)=\Omega\left(g_{3}\right)
$$

Note: The explanations below are not proofs because we can't prove anything by example. But they do give us an idea of the relative values of each function as n gets very large. Also, the substitution of 2^{128} for n is an arbitrary choice that allows us to compare functions with a very large value of n.

1. Explanation for $g_{1}=\Omega\left(g_{2}\right)$:

Show $2^{n}=\Omega\left(n^{\frac{3}{2}}\right)$:
Take \lg of both sides to get $\lg 2^{n}=n l g 2=n$ and $\lg n^{\frac{3}{2}}=\frac{3}{2} \lg n$.
Substitute large value for n : let $n=2^{128}$. Then we are asking, which is bigger, 2^{128} or $\frac{3}{2} \lg 2^{128}$? We get $2^{128}>\frac{3}{2} \lg 2^{128}$ because $2^{128} \approx 3.4 * 10^{38}>\frac{3}{2} 128=192$.
Alternately, we could just use the observation that exponentials dominate polynomials for any base >1.
2. Explanation for $g_{1}=\Omega\left(g_{3}\right)$:

Show $2^{n}=\Omega(n l g n)$:
Take \lg of both sides to get $\lg 2^{n}=n \lg 2=n$ and $\lg (n l g n)=l g n+\lg \lg n$.
Substitute large value for n : let $n=2^{128}$. Then we are asking, which is bigger, 2^{128} or $\lg 2^{128}+\lg \lg 2^{128}$? We get $2^{128}>128+\lg \lg 2^{128}=128+\lg 128=128+7$. So $g_{1}=\Omega\left(g_{3}\right)$ because $2^{128} \approx 3.4 * 10^{38}>135$.
3. Explanation for $g_{1}=\Omega\left(g_{4}\right)$:

Show $2^{n}=\Omega\left(n^{\lg n}\right)$:
Take \lg of both sides to get $\lg 2^{n}=n \lg 2=n$ and $\lg \left(n^{\operatorname{lgn}}\right)=\lg n * \lg n$.
Substitute large value for n : let $n=2^{128}$. Then we are asking, which is bigger, 2^{128} or $\lg 2^{128} * \lg 2^{128}$? We get $2^{128} \geq 128 * 128=16384$ because $2^{128} \approx 3.4 * 10^{38}>16384$.
4. Explanation for $g_{4}=\Omega\left(g_{2}\right)$:

Show $n^{\lg n}=\Omega\left(n^{\frac{3}{2}}\right)$:
Take lg of both sides to get $\lg \left(n^{\operatorname{lgn}}\right)=\lg n * \lg n$ and $\lg \left(n^{\frac{3}{2}}\right)=\frac{3}{2} * \lg n$.
We can cancel a factor of $\lg n$ on each side to get $\lg n>\frac{3}{2}$, which is true because $\frac{3}{2}$
is a constant.
5. Explanation for $g_{4}=\Omega\left(g_{3}\right)$:

Show $n^{\operatorname{lgn}}=\Omega(n \lg n)$:
Take lg of both sides to get $\lg \left(n^{\operatorname{lgn}}\right)=\lg n * \operatorname{lgn}$ and $\lg (n \lg n)=\lg n+\lg \lg n$.
Substitute large value for n : let $n=2^{128}$. Then $128 * 128=16384>\lg 2^{128}+$
$\lg \lg 2^{128}=128+7=135$.
6. Explanation for $g_{2}=\Omega\left(g_{3}\right)$:

Show $\left(n^{\frac{3}{2}}\right)=\Omega(n l g n)$:
Take \lg of both sides to get $\lg n^{\frac{3}{2}}=\frac{3}{2} \lg n$ and $\lg (n l g n)=l g n+l g l g n$.
Substitute large value for n : let $n=2^{128}$. Then $\frac{3}{2} \lg 2^{128}=192>\lg 2^{128}+\lg \lg 2^{128}=$
135. Since 192 is not that much larger than 135 , choose n^{1024}. Then $\frac{3}{2} \lg 2^{1024}=$ $1536>1024+10$.

