
CMPU 331 · Compilers · Fall 2019
Project - Intermediate Code Generator

Due Friday, December 20, 2019 by 11:59pm

1 Overview
The four project milestones will direct you to design and build a compiler for the DL language, which isa simple subset of the C language. Each assignment will cover one component of the compiler: lexicalanalysis, parsing, semantic analysis, and code generation. Each assignment will ultimately result in aworking compiler phase which can interface with other phases. You will be implementing the projectsin Python.
For this assignment, you will write a code generator that outputs LLVM intermediate representation.
You may work either individually or in pairs for this project.

2 Getting Started
You will submit your code through GitHub Classroom, so the first step is to clone a copy of the skele-ton files from GitHub. In Moodle, under the topic ”Code Generation”, you’ll find a link to ”Generatoron GitHub”. Follow that link, select your team (or create a new team), and then click the ”Acceptthis assignment” button to create your own private copy of the skeleton files. Your copy will be aGitHub repository located at https://github.com/vassar-cs331-2019b/generator-yourusername (substi-tute your GitHub username). From that page, you can copy the URL for cloning by clicking the greenbutton ”Clone or download”, and then paste the URL onto the command-line as an argument to the
git clone command.

$ git clone https://github.com/vassar-cs331-2019b/generator-yourusername.git

The clone command will create a directory named generator-yourusername on your machine, and inthat directory you’ll find the following files:
• LICENSE - This file contains the open source license for the code. Below the copyright line withmy name on it, add another copyright line with your name. (Or, just copy this file from your lexerproject repository.)
• setup.py - This file contains metadata about the code. Replace my name and email with yours.(Or, just copy this file from your lexer project repository.)
• runtests.py - This script is a simple test runner. You can call it with python3 runtests.py to runall the tests.
• generator.py - This script is a command-line interface for the code generator, which you mightfind useful while you’re developing it. You can run it it on the command-line, passing it oneargument for the name of a DL file to parse, like python3 generator.py filename.dl. The scriptwill read the file, parse it, run your generator library, and write out the LLVM code returned bythe generator to a file named filename.ll.

1

https://github.com/vassar-cs331-2019b/generator-yourusername


• sly/lex.py and sly/yacc.py - These files are libraries used in the lexer and parser. You won’tmake any changes to these files, they are only included in the skeleton so you don’t need toinstall them.
• dl/ast.py - This library contains the class definitions for the AST node types you will use in yourcode generator.
• dl/lexer.py and tests/test lex.py - These are a complete implementation and tests for the lexerstage of the compiler. You can (optionally) replace them with your own implementation from thelexer project submission, together with any tests you added.
• dl/parser.py and tests/test parser.py - These are a complete implementation and tests for theparser stage of the compiler. You can (optionally) replace them with your own implementationfrom the parser project submission, together with any tests you added.
• dl/generator.py - This file contains a skeleton for a DL code generator. There are commentsindicating where you need to fill in code, but you are welcome to make any modifications to theskeleton. The skeleton is functional, and will pass two tests, but it doesn’t do much.
• tests/test generator.py - This file contains tests for the code generator, including at least onetest for each type AST node, and one test of a longer code example. The provided tests are notexaustive, you may want to add more as you work. You won’t be graded on the tests you add,but testing more thoroughly can increase your confidence that your semantic analysis is workingas it should.
• tests/simple.dl - This file is a code example in the DL language, which is used by one of the tests.

The CS lab workstations have all the software you need installed already. If you want to work on yourown laptop, you might need to install LLVM.
PyCharm (https://www.jetbrains.com/pycharm/) is one IDE for working with Python, and is alreadyinstalled on the CS lab workstations (though, apparently only with a trial license). But, you can use anyIDE or text editor you prefer.

3 Code Generator Implementation
In this assignment you will write a code generator for DL. The assignment makes use of two resources:a tree traversal library and a collection of class definitions for abstract syntax tree (AST) nodes. Theoutput of your code generator will be a string containing a complete program, with the same function-ality as the original DL source program, but translated into LLVM intermediate representation.
You might find it helpful to refer to these sources as you work:

• Appendix A - ”The DL Language” starting on page 247 of the textbook ”A Practical Approach toCompiler Construction” by Des Watson
• Table 5.1 - ”Parse tree nodes” on page 120 of the textbook ”A Practical Approach to CompilerConstruction” by Des Watson
• A small working example of a code generator for the Calc language, from class: https://github.
com/vassar-cs331-2019b/calc-examples/blob/master/calc/generator.py

2

https://www.jetbrains.com/pycharm/
https://github.com/vassar-cs331-2019b/calc-examples/blob/master/calc/generator.py
https://github.com/vassar-cs331-2019b/calc-examples/blob/master/calc/generator.py


3.1 Visitor Methods for AST Nodes
The skeleton includes class definitions for a collection of AST node types that you used in the parserand semantic analyzer, and will use again in the code generator. These are inspired by the node typesdefined in the textbook (on page 120), but not exactly the same. A description of the AST node typeswas provided in the instructions for the parser project assignment, so you will likely find it useful torefer back to that description.
For each AST node type, you will need to write a single method in the code generator, that knows howto generate the LLVM code for that specific type of AST node. For example, for BinOp AST nodes, youwill need to implement a method in the code generator named visit BinOp, which receives a singleargument named node, and generates the appropriate text for the LLVM opcode that corresponds towhatever operator the BinOp node contains (that is, addition, subtraction, multiplication, or division).
The skeleton code generator includes a visitor method for every AST node type, but most of themhaven’t been implemented yet. You will need to delete the single line pass from the body of themethod (which just tells Python ”do nothing for this method, but also don’t complain that the methodisn’t implemented yet”), and replace it with your own code. The following table lists the visitor methodsincluded with the skeleton, a description of what they should do, and the value each method shouldreturn.

3.1.1 visit Integer

Already implemented.
What it does: Not much. Since LLVM works with integers directly, this simply uses the integer valuefrom node.value.
Note, this method doesn’t directly add any generated code, it only returns a value to be used by othervisit methods.
Returns: The integer value.

3.1.2 visit Variable

Partially implemented.
What it does: Checks if the node.symbol (from the semantic analyzer) was a VariableSymbol or an
ArgumentSymbol, and calls a different helper method for each. Arguments are accessed using a tempo-rary register with the same name as the DL argument, so the helper method access Argument simplyreturns node.name with the string ”%” added in front.
What you need to implement: For VariableSymbol, you will need to implement the helper method
access Variable, which will write out a single line of LLVM code, something like this:

%tmp.5 = load i32, i32* %x

In this example, %tmp.5 is a temporary register, and %x is a register which holds (a pointer to) the DLvariable named x.
The generator class includes a helper method for generating unique temporary register names, whichyou can call in Python:

temp_name = self.new_temporary()

3



This exact line will be the first line of your access Variable helper method. The second line will simplycreate a variable called local name, by appending ”%” onto the front of the DL variable name, to makea LLVM local name.
local_name = "%" + node.name

The rest of the helper method will be a few lines of code that you will use over and over again through-out the generator:
template = """

; some LLVM code here
"""
output_code = template % (temp_name, local_name)
self.add_code(output_code)
return temp_name

First it makes a template variable, which is just literal lines of LLVM code, but with %s in place of anytext that needs to be substituted. In this helper method, the LLVM code will be just the load instructionabove, but replacing both %tmp.5 and %x with %s so we can substitute generated register names. Thenext line processes the template, substituting each %s with a string value from the list, and then storesthe result in the variable output code. The next line calls the method add code, telling the generator tosave the generated lines of code. And, the last line returns the name of the temporary register, so thatother instructions can use the value that was fetched from the variable.
Returns: A string containing the name of the temporary register that holds the value fetched from thevariable or argument.

3.1.3 visit ArrayIndex

Already implemented.
What it does: Accessing a value at an array index is similar to accessing a value in a named variable.What makes the method more complex is that arrays contain multiple elements, so the LLVM codeneeds to first fetch a pointer to the correct element in the array (using the index), and then fetchthe value from that element. To do this, the method generates two lines of LLVM code, the first isa getelementptr instruction, and the second is a load instruction (just like we generated for variableaccesses).

%tmp.7 = getelementptr [10 x i32], [10 x i32]* %y, i32 0, i32 5
%tmp.8 = load i32, i32* %tmp.7

In this example, %tmp.7 is a temporary register holding a pointer to one element of the array, [10 x
i32] is the type of the array (the array holds 10 elements, and each element is an i32 integer), %y isa register which holds (a pointer to) the DL array named y, and 5 is the index of the specific elementwe’re accessing from the array. Finally, %tmp.8 is a temporary register holding the value fetched fromthe element at index 5 of the array.
Returns: A string containing the name of the temporary register that holds the value fetched from thearray at the index position.

3.1.4 visit BinOp

Not implemented yet.

4



What you need to implement: Take a look at the visit BinOp method in the Calc example, it isbasically identical to what you need here. This method will generate a single LLVM instruction.
%tmp.1 = add i32 %tmp.2, %tmp.3

This example is an add instruction, %tmp.2 and %tmp.3 are temporary registers holding the values tobe added, and %tmp.1 is a temporary register holding the result of the addition. In your method, you’llneed to create a new temporary register to hold the result of the operation, by calling the new temporarymethod. Then, you’ll recursively visit the left and right children of the BinOp node, so they can generatethe neccessary LLVM code to access the two arguments to the operaton.
left_reg = self.visit(node.left)
right_reg = self.visit(node.right)

Then look at node.op to decide which LLVM instruction you need to generate for this BinOp. The pos-sible values for node.op are PLUSOP, MINUSOP, MULTIPLYOP, and DIVIDEOP, and the corresponding LLVMinstruction will be one of these four:
%result = add i32 %arg1, %arg2
%result = sub i32 %arg1, %arg2
%result = mul i32 %arg1, %arg2
%result = udiv i32 %arg1, %arg2

When you make your template string, use %s in place of all three temporary register names, and also inplace of the operator name add. Finally, process the template substitutions, save the generated codeby calling the add codemethod, and return the temporary register name for the result of the operation,so that other instructions can use the result.
Returns: A string containing the name of the temporary register that holds the result of the operation.

3.1.5 visit RelOp

Already implemented.
What it does: Generating code for a relational operator is similar to generating code for a binary op-erator. The possible values for node.op are EQOP, NEOP, LTOP, LEOP, GTOP, and GEOP, and the correspondingLLVM instructions look like:

%tmp.1 = icmp eq i32 %tmp.2, %tmp.3

This example is an icmp eq instruction (compare equal), %tmp.2 and %tmp.3 are temporary registersholding the values to be compared, and %tmp.1 is a temporary register holding the result of the com-parison.
Returns: A string containing the name of the temporary register that holds the result of the operation.

3.1.6 visit Assign

Partially implemented.
What it does: In DL, assignment is the only way to store a value in a variable or array element. Theleft side of the assignment operation needs to be handled differently than accessing variables or arrayelements, specifically it needs to generate LLVM store instructions, instead of load instructions.

5



The visit Assignmethod checks if node.left is a Variable or an ArrayIndex, and calls a different helpermethod for each. The assign ArrayIndex helper method generates the LLVM instructions to assign avalue to an array element, and the assign Variable helper method is left for you to implement.
What you need to implement: You will need to fill in the assign Variable helper method, to generatethe LLVM code to assign a value to a variable. Take a look at the assign ArrayIndex helper method,since it is similar to what you need here (though, assigning to an array element is more complex thanassigning to a variable). The assign Variablemethod will generate a single LLVM instruction:

store i32 %tmp.4, i32* %x

In this example, %tmp.4 is a temporary register containing the value to store in the variable, and %x is aregister which holds (a pointer to) the DL variable named x.
The name of the temporary register containing the value to store has already been provided for you,in the argument named right reg. You will need to create the local name of the DL variable, whichwill just be node.name with ”%” added in front. Finally, create the template string, process the templatesubstitutions, and save the generated code by calling the add codemethod.
Returns: nothing

3.1.7 visit Print

Already implemented.
What it does: This method generates the LLVM instructions to print a value. In LLVM, output ishandled by built-in functions, so the single line of generated LLVM code is a call to the printf function.
Returns: nothing

3.1.8 visit Read

Already implemented.
What it does: This method generates the LLVM instructions to read a value from ”standard input”(typically this means reading from a prompt on the command-line, but for testing purposes you cantrick it into reading from some other source). In LLVM, input is handled by built-in functions, so thesingle line of generated LLVM code is a call to the scanf function.
Returns: nothing

3.1.9 visit Block

Already implemented.
What it does: This method iterates through node.statements, and visits each statement AST node.The method doesn’t directly generate any code, all code generation for statements is done by the visitmethods for the statement AST nodes.
Returns: nothing

6



3.1.10 visit If

Not implemented yet.
What you need to implement: You will need to generate the labels and branch instructions to im-plement the control flow for an if statement. Take a look at the visit Whilemethod, which is alreadyimplemented, since it’s very similar to what you need to do for visit If. Just remember that the con-trol flow for if doesn’t repeat, so the labels and branch instructions will be a little different than while.Ultimately, the code you generate will look something like this:

; compare instruction generated by visiting node.condition
br i1 %tmp.2, label %if.true.7, label %if.false.8

if.true.7:
; true body generated by visiting node.body_true
br label %if.end.9

if.false.8:
; else body generated by visiting node.body_else
br label %if.end.9

if.end.9:

In this example, if.true.7, if.false.8, and if.end.9 are all labels, generated by calling a Python helpermethod in the generator, which creates a new unique label:
true_label = self.new_label("if.true")

(Note, you don’t have to name your labels exactly like this, they really only need to be some uniquestring name.)
The %tmp.2 temporary register in the example holds the result of the comparison operation. The stringname of this temporary register is returned by the call to visit node.condition:

cond_reg = self.visit(node.condition)

You will also need to visit node.body true and node.body else to generate the instructions for the codeinside those two blocks. One important point to keep in mind is that the visits to the condition andbody AST nodes will immediately add their generated code, so you need to break up the lines of codegenerated directly in the visit If method into 3 separate template strings and process each one inthe right order. The visit Whilemethod is a good example of how this is done.

3.1.11 visit While

Already implemented.
What it does: This method generates the labels and branch instructions to implement the controlflow for a while loop. The code it generates looks something like this:
while.loop.2:
; compare instruction generated by visiting node.condition
br i1 %tmp.6, label %while.body.3, label %while.end.4

while.body.3:
; body generated by visiting node.body
br label %while.end.4

while.end.4:

In this example, while.loop.2, while.body.3, and while.end.4 are all labels, generated by calling aPython helper method in the generator, which creates a new unique label:
7



loop_label = self.new_label("while.loop")

The temporary register %tmp.6 in the example holds the result of the comparison operation. The stringname of this temporary register is returned by the call to visit node.condition.
If you take a look at how visit While is implemented, you’ll see that it generates a few lines of LLVMcode before it visits node.condition, then generates a few more lines of LLVM code between visiting
node.condition and node.body, and finally generates a few lines of LLVM code after it visits node.body.It is necessary to break up the code generation for control flow this way because the visits to thecondition and body AST nodes immediately add their generated code.

3.1.12 visit Declarations

Already implemented.
What it does: This method iterates through node.declarations, and visits each FunctionDeclarationAST node (to generate the LLVM code for function declarations), but saves the VariableDeclarationsAST nodes to process later. The visit Declarations method doesn’t directly generate any code, allcode generation for declarations is done by the visit FunctionDeclaration and visit VariableDeclarationsmethods.
Returns: A list of VariableDeclarations AST nodes extracted from the declarations list, so visit Programcan generate the code for variable declarations in the body of the main function.

3.1.13 visit VariableDeclarations

Already implemented.
What it does: This method iterates through node.variables, checks if each declaration is a Variableor an ArrayIndex, and calls a different helper method for each. The declare Variable helper methodgenerates the LLVM instructions to allocate memory for an integer variable, and then initializes thevariable value to 0.

%x = alloca i32
store i32 0, i32* %x

In this example, %x is the register holding (a pointer to) the DL variable named x, and the variable isallocated enough space to hold a single integer of type i32.
The declare ArrayIndex helper method generates the LLVM instructions to allocate memory for anarray.

%y = alloca [10 x i32]

In this example, %y is the register holding (a pointer to) the DL array named y, and the array is allocatedenough space to hold 10 integers of type i32.
Returns: nothing

3.1.14 visit FunctionDeclaration

Already implemented.

8



What it does: This method generates the LLVM code for a function declaration. The code it generateslooks something like this:
define i32 @alpha(i32 %b, i32 %c) {

; variable declarations generated by visiting node.vars

; body generated by visiting node.body
}

In this example, @alpha is the name of the function, %b is the first argument to the function, and %c isthe second argument.
The name of the function is just node.name with ”@” added in front, since functions are declared asglobals in LLVM.
The list of arguments is generated by visiting node.args, and will be an empty string if there are noarguments. The Python code for handling arguments checks if node.args is defined, and only visits the
Arguments AST node if it exists.

args_string = ""
if node.args:

args_string = self.visit(node.args)

The list of variables to declare for the function is also optional, so the Python code checks if node.varsis defined before visiting the VariableDeclarations AST node.
If you take a look at how visit FunctionDeclaration is implemented, you’ll see that it generates thebeginning of the function declaration before it visits the variable declarations and node.body, and finallygenerates the closing bracket for the function declaration after it visits node.body. It is necessary tobreak up the code generation for the function declaration this way because the visits to the variabledeclaration and body AST nodes immediately add their generated code.
Returns: nothing

3.1.15 visit FunctionCall

Not implemented yet.
What you need to implement: You will need to implement the code to call a function, which meansgenerating a single line of LLVM code that looks something like this:

%tmp.7 = call i32 @alpha(i32 %tmp.8, i32 %tmp.9)

In this example, %tmp.7 is a temporary register holding the result of the function call, @alpha is thename of the function, %tmp.8 is a temporary register holding the first value passed as an argument tothe function, and %tmp.9 is a temporary register holding the second value passed as an argument tothe function.
The name of the function is just node.name with ”@” added in front, since functions are declared asglobals in LLVM.
The list of arguments is generated by visiting node.args, and will be an empty string if there are noarguments. Take a look at how the visit FunctionCall method checked whether node.args existsbefore visiting it, you’ll need to do exactly the same in visit FunctionDefinition.
When you make your template string, use %s in place of all three temporary register names, and alsoin place of the function name @alpha. Finally, process the template substitutions, save the generated

9



code by calling the add code method, and return the temporary register name for the result of thefunction call, so that other instructions can use the result.
Returns: A string containing the name of the temporary register that holds the result of the functioncall.

3.1.16 visit Arguments

Already implemented.
What it does: This method generates a string sequence of arguments, with types for each argument.The string it generates looks something like this:

i32 %b, i32 %c

Note, this method doesn’t directly add any generated code, it only returns a string to be used by othervisit methods.
Returns: a string sequence of arguments for a function definiton or function call.

3.1.17 visit Return

Already implemented.
What it does: This method generates the LLVM instruction to return from a function, which looks like:

ret i32 %tmp.9

Returns: nothing

3.1.18 visit Program

Already implemented.
What it does: This method generates the LLVM code for the beginning and end of the entire program.
The method first visits node.declarations to generate any function declarations, and capture a list ofvariable declarations to process later. Then the method generates the LLVM code necessary to importthe @printf and @scanf functions, which are used by visit Print and visit Read. Finally, the methodgenerates the LLVM code for the @main function, which looks something like this:
define i32 @main() {

; variable declarations generated by visiting each element in var_decs

; body generated by visiting node.body
ret i32 0

}

If you take a look at how visit Program is implemented, you’ll see that it generates the beginningof the @main function declaration before it visits the variable declarations and node.body, and finallygenerates the ret instruction and closing bracket for the function declaration after it visits node.body.It is necessary to break up the code generation for the function declaration this way because the visitsto the variable declaration and body AST nodes immediately add their generated code.
Returns: nothing

10



3.2 Skipped Tests
In the skeleton, many of the tests are marked as skip, because we don’t expect these tests to pass yet.Marking the tests as skipped makes them display a clean message when you run runtests.py, like this:

... skipped 'Arrays not implemented yet'

When you start working on the productions related to a particular test, first delete the line that marksthat test to be skipped, from the test file tests/test generator.py. The line will look like this:
@unittest.skip("Arrays not implemented yet")

After you delete the skip marker, the test will fail, and display an ugly error message. The error mes-sage will give you some clues about what’s missing from your code generator. Once you’ve imple-mented all the productions needed to pass a particular test, the status report at the end of the testrun will change from something like:
FAILED (errors=1, skipped=4)

To something like:
OK (skipped=4)

Passing tests is how you know you’ve implemented your code generator correctly. When all the testsare passing with no skips, you’re done.
In general, you’ll find it easier to start working on the tests towards the top of the tests/test generator.pyfile, since they test features that are easier to implement. The tests grow more complex towards theend of the file, and the very last test parses the DL code example in tests/simple.dl.

4 Submitting
To submit your work, git add any files you changed, then git commit them with a sensible commitmessage about what you changed, and finally git push the changes back to GitHub.

$ git add dl/generator.py
$ git commit -m "Implemented code generation for arrays"
$ git push origin master

It’s a good idea to commit your work frequently as you go, so you have a backup if anything goeswrong. Only the last version you submit before the deadline will be graded.

11


	Overview
	Getting Started
	Code Generator Implementation
	Visitor Methods for AST Nodes
	visit_Integer
	visit_Variable
	visit_ArrayIndex
	visit_BinOp
	visit_RelOp
	visit_Assign
	visit_Print
	visit_Read
	visit_Block
	visit_If
	visit_While
	visit_Declarations
	visit_VariableDeclarations
	visit_FunctionDeclaration
	visit_FunctionCall
	visit_Arguments
	visit_Return
	visit_Program

	Skipped Tests

	Submitting

