
Software Process
Process: A sequence of activities, subject to constraints on
resources, that produce an intended output of some kind.

Any process has these characteristics:
• The process prescribes all the major activities
• The process uses resources, subject to certain constraints,and
produces products, both intermediate and final.
• The process can be composed of linked sub-processes.
• Each process activity has entry and exit criteria.
• The activities are organized in a sequence.
• Every process has a set of governing principles.
• Constraints may apply to an activity, resource, or product.

Processes and Activities

Process1 = <A1, A2, A4, A6, A2, A1, A8>

Repeating elements

Activities can be modeled in different ways, e.g., as
transitions between states.

Activities can be classified as belonging to certain stages.

Software development stages
• Requirements analysis and definitions
• system design
• program design
• program implementation
• unit testing
• system testing
• system delivery
• maintenance

Processes and Development Models

A development model specifies the sequence in which
development stages occur.

Example:
<S1, S2, S3, S2, S3,…,S2, S3, S4, S5, S4, S6, S7, S8>

A software development model is an abstract specification
of a software process. Many concrete processes can satisfy
the same model.

The Waterfall Model
R.A.

S.D
P.D

Coding
U&I

Testing
S.T.

O
&
M

A.T.

W. Model with Prototyping

R.A.
S.D

P.D
Coding

U&I
Testing

S.T.

verify
validate

A.T.Prototyping
O
&
M

Prototyping Model

RevisionsRevisions Revisions

Prototype
Design

System Req.
(can be informal or incomplete)

Prototype
Req.

user/
customer
review

revise
proto

Delivered
System

Prototype
System

Test

one-shot, incremental and
evolutionary approaches

• one-shot
– the whole application is implemented in one go
– For example, the waterfall model

• incremental
– application is implemented in steps
– each step delivers a subset of the functions
– functions in the subset are fully implemented

i.e. can be used by client...

one-shot, incremental and
evolutionary approaches contd.

• evolutionary
– the system is implemented via a number of

versions
– each version is ‘exercised’ by users and

suggestions for improvement made

‘rules of thumb’ about approach to
be used

IF uncertainty is high
THEN use evolutionary approach

IF complexity is high but uncertainty is not
THEN use incremental approach

IF uncertainty and complexity both low
THEN use one-shot

IF schedule is tight
THEN use evolutionary or incremental

combinations of approach
installation

yes yes no

yes yes yes

yes yes no

evolutionary

incrementaltr
uc
t

evolutionaryincrementalone-shot

one-shot

co
ns

io
n

• one-shot or incremental installation - any
construction approach possible

• evolutionary installation implies evolutionary
construction

spiral model
determine objectives,
alternatives, constraints

evaluate alternatives,
identify & resolve risks

plan next phases develop, verify next-level
product

review
commit

prototypes

requirements

design
build

implement

spiral model
• could be seen as another view of waterfall

model
• at each stage of the development project a

greater level of detail is considered
• more knowledge is gathered
• at end of each stage review scope and risk

and decide whether to commit to the next
stage

• see Boehm’s A spiral model of software
development and enhancement

‘Agile’ methods
structured development methods have some

perceived disadvantages
– produce large amounts of documentation which

can be largely unread
– documentation has to be kept up to date
– division into specialist groups and need to

follow procedures stifles communication
– users can be excluded from decision process
– long lead times to deliver anything etc. etc

The answer? ‘Agile’ methods?

Dynamic system development
method

• UK-based consortium
• DSDM is more a project management

approach than a development approach

Nine core DSDM principles
1. Active user involvement
2. Teams empowered to make decisions
3. Frequent delivery of products
4. Fitness for business purpose
5. Iterative and incremental delivery
6. Changes are reversible
7. Requirements base-lined at a high level
8. Testing integrated with development
9. Collaborative and co-operative approach

Key indicators for DSDM

• visibility of functionality at user interface
• clear identification of all classes of user
• not too much complexity
• not large applications - split into

components
• need for time constraints
• flexible high-level requirements

time-boxing
• time-box fixed deadline by which something

has to be delivered
• typically two to six weeks
• MOSCOW priorities

– Must have - essential
– Should have - very important, but system could

operate without
– Could have
– Want - but probably won’t get!

Extreme programming-1
• Associated with Kent Beck - see Extreme

programming explained
• Developed originally on Chrysler C3

payroll (Smalltalk) project
• Agile methods include Jim Highsmith’s

Adaptive Software Development and
Alistair Cocburn’s Chrystal Lite methods

Extreme programming-2

• increments of one to three weeks
– customer can suggest improvement at any point

• argued that distinction between design and
building of software are artificial

• code to be developed to meet current needs
only

• frequent re-factoring to keep code
structured

extreme programming-3

• developers work in pairs
• test cases and expected results devised

before software design
• after testing of increment, test cases added

to a consolidated set of test cases

XP vs. Traditional Models

When is XP Appropriate?
• Small to medium-size projects.
• The more dynamic the environment, the

better.
– Frequently changing requirements.
– High risk, tight deadline.

• Build times are short (a few minutes).
• Testing can be automated.

Does XP Really Work?

• Shown to improve quality, increase productivity,
and reduce cost.

• Reduces bugs by at least 15%.
• Pair programming benefits outweigh cost.

– Development time cost of 15%.
– Improves design and code quality.
– Reduces staffing risks.
– “..more enjoyable at statistically significant levels”.

Weaknesses of XP
• Does not scale well:

– Communication gets complicated.
– Integration becomes a bottleneck.

• Counter to business culture:
– Plans are very dynamic.
– Overtime indicates a problem with the process—not

dedication.
• Requires supporting technology:

– Automated testing.
– Flattened cost-of-change curve.

Grady Booch’s concern
Booch, an OO authority, is concerned that

with requirements driven projects:
‘Conceptual integrity sometimes suffers

because this is little motivation to deal with
scalability, extensibility, portability, or
reusability beyond what any vague
requirement might imply’

Tendency towards a large number of discrete
functions with little common infrastructure?

Some Questions about Models

• Why are some sequences of development
stages chosen as software dev. models?

• What use are software dev. models?
• Why are management activities such as cost

estimation not represented in these models?
• Can you devise a software dev. model in

which management activities are explicitly
represented?

	Software Process
	Processes and Activities
	Software development stages
	Processes and Development Models
	The Waterfall Model
	W. Model with Prototyping
	Prototyping Model
	one-shot, incremental and evolutionary approaches
	one-shot, incremental and evolutionary approaches contd.
	‘rules of thumb’ about approach to be used
	combinations of approach
	spiral model
	spiral model
	‘Agile’ methods
	Dynamic system development method
	Nine core DSDM principles
	Key indicators for DSDM
	time-boxing
	Extreme programming-1
	Extreme programming-2
	extreme programming-3
	XP vs. Traditional Models
	When is XP Appropriate?
	Does XP Really Work?
	Weaknesses of XP
	Grady Booch’s concern
	Some Questions about Models

