
BOCES Summer Scholars Marist College

OpenSceneGraph – Sample Code Snippets

Fundamentals
General Notes: You should have a basic understanding of basic graphics concepts, including
scene graphs, before attempting to apply the examples given in this document.

Build Notes: To make your Visual Studio projects build properly, you must add osg.lib to your
Additional Dependencies under the Linker->Input settings (under Unix/Linux it is libosg.so).

Create a simple shape

 #include <osg/Geode>
 #include <osg/ShapeDrawable>

 osg::ref_ptr<osg::Geode> myNode = new osg::Geode

 myGeode->addDrawable(new osg::ShapeDrawable(new osg::Sphere());

Notes: Predefined shape primitives include Box, Capsule, Cone, Cylinder, InfinitePlane & Sphere. Other
classes are provided also to support more complex shapes. Initial properties of the shape primitives can be
set at creation time or afterward (see API documentation for details).

Load object(s) from file

 #include <osg/Node>

 osg::ref_ptr<osg::Node> myNode
 = osgDB::readNodeFile("MyModel.obj");

Notes: Node files must be in a format supported by OSG. The node returned may be a Group node with
children corresponding to the various objects defined in the file. Linking requires the library osgDB.lib (or
libosgDB.so under Unix/Linux).

Attach a node under another

 someNode->addChild(otherNode.get()); // if otherNode is a ref_ptr

 someNode->addChild(otherNode); // if otherNode is a raw pointer

Notes: The parent node must be a Group or a node type derived from Group. This code creates a subgraph,
which must ultimately be attached to your scenegraph at the root node or elsewhere.

Transform a node/subgraph

 #include <osg/PositionAttitudeTransform>

 // Create transformation node
 osg::ref_ptr<osg::PositionAttitudeTransform> myPat
 = new osg::PositionAttitudeTransform;
 myPat->setPosition(osg::Vec3(1.0, ydist, zdist));
 myPat->setScale(osg::Vec3(xscale, yscale, zscale));
 myPat->setAttitude(osg::Quat(angle_in_rads, axis_of_rot_vec));

 // Attach node to be transformed
 myPat->addChild(myNode.get());

Notes: Don't forget to attach the transform node to the graph, whether at the root or elsewhere. Other
types of transform nodes are also available; the PAT is easy to use for simple transforms.

Computer Graphics Summer 2009

BOCES Summer Scholars Marist College

Setup the Viewer object

 #include <osgViewer/Viewer>
 #include <osgViewer/ViewerEventHandlers>

 osgViewer::Viewer viewer;
 viewer.setSceneData(root.get());

 viewer.addEventHandler(new osgViewer::StatsHandler);
 viewer.addEventHandler(new osgViewer::WindowSizeHandler);
 viewer.addEventHandler(
 new osgGA::StateSetManipulator(
 viewer.getCamera()->getOrCreateStateSet()));
 viewer.setCameraManipulator(new osgGA::TrackballManipulator());
 viewer.realize();

Notes: The handlers above provide user controls to display performance statistics, switch rendering mode,
toggle fullscreen. Linking requires osgViewer.lib (or libosgViewer.so under Unix/Linux).

Begin the main event loop

 return (viewer.run());

Notes: This should be the last line in your main function.

Add a light source to the scene

 #include <osg/LightSource>

 osg::ref_ptr<osg::LightSource> ls = new osg::LightSource;

 ls->getLight()->setPosition(osg::Vec4(1,-1, 1, 0)); // make 4th coord 1 for point
 ls->getLight()->setAmbient(osg::Vec4(0.2, 0.2, 0.2, 1.0));
 ls->getLight()->setDiffuse(osg::Vec4(0.7, 0.4, 0.6, 1.0));
 ls->getLight()->setSpecular(osg::Vec4(1.0, 1.0, 1.0, 1.0));

 root->addChild(ls.get());

Notes: This code creates a directional (“distant”) light source; change the fourth coordinate to 1 in order to
make it a point source. Feel free to set the light properties to whatever values suit your specific scene;
some properties such as attenuation an spot-exponent are not shown here. If you want multiple lights, you
can add them all to a Group node, and then add the group to the root of the scene graph. You will also need
to set the light number for each light so they don't interfere with one another.

Set custom material properties

 #include <osg/Material>

 osg::ref_ptr<osg::Material> mat = new osg::Material;

 mat->setColorMode(osg::Material::DIFFUSE);
 mat->setAmbient (osg::Material::FRONT_AND_BACK, osg::Vec4(0.2, 0.2, 0.2, 1.0));
 mat->setDiffuse (osg::Material::FRONT_AND_BACK, osg::Vec4(0.9, 0.3, 0.4, 1.0));
 mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4(1.0, 1.0, 1.0, 1.0));
 mat->setShininess(osg::Material::FRONT_AND_BACK, 64);

 someObjNode->getOrCreateStateSet()->
 setAttributeAndModes(mat.get(), osg::StateAttribute::ON);

Notes: You can set the RGBA color values as you wish to achieve the desired effect.

Computer Graphics Summer 2009

BOCES Summer Scholars Marist College

Optimize your scene graph for better performance

 #include <osgUtil/Optimizer>

 osgUtil::Optimizer optimizer;
 optimizer.optimize(root.get());

Notes: Check the frame rate before and after you optimize to see the difference. For simple scenes, the
difference may be negligible, but more complex scenes should noticeably benefit. Linking requires
osgUtil.lib (or libosgUtil.so under Unix/Linux).

Attach a texture to an object

 #include <osg/Texture2D>

 osg::ref_ptr<osg::Texture2D> myTex
 = new osg::Texture2D(osgDB::readImageFile("myTexture.jpg"));

 myNode->getOrCreateStateSet()->
 setTextureAttributeAndModes(0, myTex.get());

Notes: Image file must be a format supported by OSG. Don't forget to attach the object node to your scene
graph, whether at the root or elsewhere. Linker requirements here are the same as those described above
for loading a model from a node file.

Set a custom camera

 #include <osg/Camera>

 osg::ref_ptr<osg::Camera> myCam = new osg::Camera;
 myCam->setClearColor(osg::Vec4(0, 0, 0, 1)); // black background

 // set dimensions of the view volume
 myCam->setProjectionMatrixAsPerspective(30, 4.0 / 3.0, 0.1, 100);

 // set position and orientation of the viewer
 myCam->setViewMatrixAsLookAt(
 osg::Vec3(0, -10, 10), // eye above xy-plane
 osg::Vec3(0, 0, 0), // gaze at origin
 osg::Vec3(0, 0, 1)); // usual up vector

 viewer.setCamera(myCam); // attach camera to the viewer
Notes: The clear color may be set to any desired RGBA color. Values shown for the projection matrix give a
view very similar to the default, but feel free to experiment. The Viewer object can have multiple cameras
attached, but it is simplest to start out with just one.

Make the camera track a specific node

 #include <osgGA/NodeTrackerManipulator>

 osg::ref_ptr<osgGA::NodeTrackerManipulator> manip
 = new osgGA::NodeTrackerManipulator;

 manip->setTrackNode(frisbeeNode.get());
 manip->setTrackerMode(osgGA::NodeTrackerManipulator::NODE_CENTER);

 viewer.setCameraManipulator(manip.get());
Notes: Consult the OpenSceneGraph API reference for information about other tracker modes.

Computer Graphics Summer 2009

BOCES Summer Scholars Marist College

Add a custom shader program to an object

 #include <osg/Shader>

 osg::ref_ptr<osg::Program> shadeProg(new osg::Program);

 osg::ref_ptr<osg::Shader> vertShader(
 osg::Shader::readShaderFile(osg::Shader::VERTEX, filename1));

 osg::ref_ptr<osg::Shader> fragShader(
 osg::Shader::readShaderFile(osg::Shader::FRAGMENT, filename2));

 //Bind each shader to the program
 shadeProg->addShader(vertShader.get());
 shadeProg->addShader(vertShader.get());

 //Attaching the shader program to the node
 osg::ref_ptr<osg::StateSet> objSS = objNode->getOrCreateStateSet();
 objSS->setAttribute(shadeProg.get());

Notes: An alternative to providing shaders as files is to directly include them in your source code.

Add rain/snow to your scene

 #include <osgParticle/PrecipitationEffect>

 osg::ref_ptr<osgParticle::PrecipitationEffect> precipNode
 = new osgParticle::PrecipitationEffect;

 precipNode->setWind(osg::Vec3(xdir, ydir, zdir));
 precipNode->setParticleSpeed(0.4);
 precipNode->rain(0.3); // alternatively, use snow

 root->addChild(precipNode.get());

Notes: You need not manually set each property of the precipitation, such as speed or wind; most of these
settings have some sensible default value, but feel free to experiment. Linking requires osgParticle.lib (or
libosgParticle.so under Unix/Linux).

Add other fancy particle effects

 #include <osgParticle/FireEffect>
 #include <osgParticle/SmokeEffect>
 #include <osgParticle/SmokeTrailEffect>
 #include <osgParticle/FireEffect>

 osg::ref_ptr<osgParticle::ParticleEffect> effectNode =
 new osgParticle::FireEffect;

 effectNode->setTextureFileName("fire.rgb");
 effectNode->setIntensity(2.5);
 effectNode->setScale(4);

 someNode->addChild(effectNode.get());
Notes: If using only one kind of effect, then you only need the corresponding include directive. When using
multiple effects, each effect must be added to the scene graph separately. Adding a particle effect as a child
of a transformation will cause the effect to be modified by the transform. The texture file may be any texture
image of your choosing, though some effects have color properties apart from the textures so the original
texture colors may not show faithfully. Linker requirements are the same as those given above for
precipitation.

Computer Graphics Summer 2009

BOCES Summer Scholars Marist College

Add simple shadowing to your scene

 #include <osgShadow/ShadowedScene>
 #include <osgShadow/ShadowMap>

 osg::ref_ptr<osgShadow::ShadowedScene> shadowScene
 = new osgShadow::ShadowedScene;
 osg::ref_ptr<osgShadow::ShadowMap> sm = new osgShadow::ShadowMap;
 shadowScene->setShadowTechnique(sm.get());
 shadowScene->addChild(lightSource.get());
 shadowScene->addChild(scene.get());

Notes: The light source and scene nodes must already have been created. The scene node represents a
Group node under which all the objects in your scene must appear. There are other shadow techniques
besides ShadowMap; however, they require more effort to get them working. If you are using
PrecipitationEffect, then you must be careful not to add the effect as a child under the ShadowedScene,
otherwise your program will be overloaded as it tries to render shadows for each raindrop. Finally, don't
forget to add your ShadowedScene to either your root node or your viewer (if the ShadowedScene is the
root node). Linking requires osgShadow.lib (or libosgShadow.so under Unix/Linux).

Turn part of your graph on/off

 #include <osg/Switch>

 osg::ref_ptr<osg::Switch> switchNode = new osg::Switch;

 switchNode->addChild(someNode.get());
 switchNode->addChild(otherNode.get());

 switchNode->setAllChildrenOff();
 switchNode->setSingleChildOn(1);

 root->addChild(switchNode.get());
Notes: You may add many children to a single switch, and the code used to turn on/off a given node(s) may
be placed inside an event handler (for example, to toggle node in response to a keystroke or mouse click).
Of course, we must remember to attach the switch itself to our scene graph at some desired point (not
necessarily at the root, though the example here shows that design).

Animate your scene

 #include <osg/NodeCallback>

 class MyCallback : public osg::NodeCallback
 {
 public:
 virtual void operator() (osg::Node* n, osg::NodeVisitor* nv)
 {
 // your code to change the scene (one frame) goes here
 }
 private:
 // perhaps some useful data variable can go here
 };

 someNode->setUpdateCallback(new MyCallback);
Notes: Any attached update callback will execute every time we process the attached node during the
update traversal of the main processing loop. Be aware that the implementation of the update callback class
may be a bit involved. It is possible to add multiple update callbacks so that each successive one wraps the
previous, but it is again best to start with just one at a time.

Computer Graphics Summer 2009

	Fundamentals
	Create a simple shape
	Load object(s) from file
	Attach a node under another
	Transform a node/subgraph
	Setup the Viewer object
	Begin the main event loop
	Add a light source to the scene
	Set custom material properties
	Optimize your scene graph for better performance
	Attach a texture to an object
	Set a custom camera
	Make the camera track a specific node
	Add a custom shader program to an object
	Add rain/snow to your scene
	Add other fancy particle effects
	Add simple shadowing to your scene
	Turn part of your graph on/off
	Animate your scene

