
Foundations of Dispatchability
for Simple Temporal Networks with Uncertainty

Luke Hunsberger1 a and Roberto Posenato2 b

1Computer Science Department, Vassar College, Poughkeepsie, NY, USA
2Dipartimento di Informatica, Università degli Studi di Verona, Verona, IT

hunsberger@vassar.edu, roberto.posenato@univr.it

Keywords:
Planning and Scheduling, Temporal Constraint Networks, Dispatchability, Real-Time Execution

Abstract:
Simple Temporal Networks (STNs) are a widely used formalism for representing and reasoning
about temporal constraints on activities. The dispatchability of an STN was originally defined as a
guarantee that a specific real-time execution algorithm would necessarily satisfy all of the STN’s
constraints while preserving maximum flexibility but requiring minimal computation. A Simple
Temporal Network with Uncertainty (STNU) augments an STN to accommodate actions with
uncertain durations. However, the dispatchability of an STNU was defined differently: in terms
of the dispatchability of its so-called STN projections. It was then argued informally that this
definition provided a similar real-time execution guarantee, but without specifying the execution
algorithm. This paper formally defines a real-time execution algorithm for STNUs that similarly
preserves maximum flexibility while requiring minimal computation. It then proves that an STNU
is dispatchable if and only if every run of that real-time execution algorithm necessarily satisfies
the STNU’s constraints no matter how the uncertain durations play out. By formally connecting
STNU dispatchability to an explicit real-time execution algorithm, the paper fills in important
elements of the foundations of the dispatchability of STNUs.

1 INTRODUCTION

Temporal networks are formalisms for represent-
ing and reasoning about temporal constraints on
activities. Many kinds of temporal networks dif-
fer in the kinds of constraints and uncertainty
that they can accommodate. Typically, the more
expressive the network, the more expensive the
corresponding computational tasks.

Simple Temporal Networks (STNs) are the
most basic and most widely used kind of tempo-
ral network (Dechter et al., 1991). An STN can
represent deadlines, release times, duration con-
straints, and inter-action constraints. The basic
computational tasks associated with STNs can be
done in polynomial time. An STN is consistent
if it has a solution (as a constraint-satisfaction
problem). But, imposing a fixed solution in ad-
vance of execution (i.e., before any actions are

a https://orcid.org/0009-0005-8603-4803
b https://orcid.org/0000-0003-0944-0419

actually performed) is often unnecessarily inflex-
ible. Instead, it can be desirable to postpone,
as much as possible, decisions about the precise
timing of actions to allow an executor to react to
unexpected events without having to do expensive
replanning. In other words, it can be desirable to
take advantage of the inherent flexibility afforded
by the STN representation. However, postponing
execution decisions invariably requires real-time
computations to, for example, propagate the ef-
fects of such decisions throughout the network. An
effective real-time execution algorithm, responsi-
ble for saying when actions should be done, must
therefore limit the amount of real-time computa-
tion. A Real-Time Execution (RTE) algorithm
that preserves maximum flexibility while requir-
ing minimal computation has been presented for
STNs (Muscettola et al., 1998). Unfortunately,
the RTE algorithm does not necessarily success-
fully execute all consistent STNs (i.e., it does
not guarantee the satisfaction of all of the STN’s

constraints). However, it has been shown that
every consistent STN can be converted into an
equivalent network that the RTE algorithm will
necessarily successfully execute—no matter how
the algorithm chooses to exploit the network’s flex-
ibility (Muscettola et al., 1998). Such networks
are called dispatchable. They provide applications
with both flexibility and computational efficiency.

Simple Temporal Networks with Uncertainty
(STNUs) augment STNs to accommodate actions
with uncertain durations (Morris et al., 2001). Al-
though more expressive than STNs, the basic com-
putational task associated with STNUs can also
be done in polynomial time (Morris, 2014; Cairo
et al., 2018). An STNU is dynamically controllable
(DC) if there exists a dynamic strategy for execut-
ing its actions such that all of its constraints will
be satisfied no matter how the uncertain action
durations play out—within their specified bounds.
An execution strategy is dynamic in that it can
react to observations of action durations as they
occur. Unlike solutions for consistent STNs, dy-
namic strategies for DC STNUs typically require
exponential space and thus cannot be computed
in advance. Instead, the relevant portions of such
strategies can be computed incrementally, dur-
ing execution. As with STNs, it is important to
preserve maximal flexibility while requiring min-
imal computation during execution. Hence, the
notion of dispatchability has also been defined for
STNUs (Morris, 2014). However, unlike for STNs,
the dispatchability of an STNU was not specified
as a constraint-satisfaction guarantee for a par-
ticular real-time execution algorithm, but instead
in terms of the dispatchability of its STN projec-
tions. (A projection of an STNU is the STN that
results from assigning a fixed duration to each
action.) Since STN dispatchability can be checked
by analyzing the associated STN graph (Morris,
2016), this definition is attractive. However, it
was only argued informally that dispatchability
for an STNU, defined in this way, would provide
a similar constraint-satisfaction guarantee in the
context of real-time execution. Nonetheless, poly-
nomial algorithms for converting DC STNUs into
equivalent dispatchable networks have been pre-
sented (Morris, 2014; Hunsberger and Posenato,
2023).

Since the primary motivation for dispatchabil-
ity is to provide a real-time execution guarantee, it
is important to formally connect STNU dispatch-
ability to a real-time execution algorithm. This
paper provides such a connection. First, it defines
a real-time execution algorithm for STNUs, called

C Z

AY

X
3

−2
−
1

−7
10

−1
1

−1

Figure 1: A sample STN graph.

RTE∗, that preserves maximal flexibility while re-
quiring minimal computation. Then it proves that
an STNU is dispatchable if and only if every run
of the RTE∗ algorithm necessarily satisfies its con-
straints, no matter how the uncertain durations
turn out. In this way, the paper fills an important
gap in the foundations of STNU dispatchability.

The rest of the paper is organized as follows.
Section 2 summarizes the main definitions and
results for the dispatchability of Simple Tempo-
ral Networks (STNs). Section 3 reviews Simple
Temporal Networks with Uncertainty (STNUs)
and how the concept of dispatchability has been
extended to them using Extended STNUs (EST-
NUs). Section 4 introduces a real-time execution
algorithm for ESTNUs, called RTE∗, and proves
its correctness. Section 5 summarizes the contri-
butions of the paper and sketches possible future
work.

2 STN DISPATCHABILITY

A Simple Temporal Network (STN) is a pair,
(T , C), where T is a set of real-valued variables
called timepoints (TPs) and C is a set of binary
difference constraints, called ordinary constraints,
each of the form Y − X ≤ δ, where X,Y ∈ T
and δ ∈ R (Dechter et al., 1991). Typically, we
let n = |T | and m = |C|. With no loss of gener-
ality, it is convenient to assume that each STN
has a special timepoint Z whose value is fixed at
zero (or some other convenient timestamp) and
is constrained to occur at or before every other
timepoint.1 Each STN has a corresponding graph,
(T , E), where the timepoints in T serve as nodes
and each constraint Y −X ≤ δ in C corresponds
to a labeled directed edge X δ Y in E , called an
ordinary edge. For convenience, such edges will
be notated as (X, δ, Y). Figure 1 shows a sam-
ple STN graph. An STN is consistent if it has a
solution as a constraint satisfaction problem. An

1It is not hard to show that in any consistent STN
(see below) there is at least one TP that can play the
role of Z (i.e., constrained to occur at or before every
other TP).

Algorithm 1: RTE: real-time execution for STNs

Input: (T , C), an STN with graph (T , E)
Output: A function, f : T → [0,∞) or fail

1 foreach X ∈ T do
2 TW(X) = [0,∞)

3 U := T ; now = 0
4 Enabs := {X ∈ T | X has no outgoing

negative edges}
5 while U ̸= {} do
6 if Enabs = ∅ then
7 return fail

8 ℓ := min{lb(W) | W ∈ Enabs}
9 u := min{ub(W) | W ∈ Enabs}

10 if [ℓ, u] ∩ [now,∞) = ∅ then
11 return fail

12 Select any X∈ Enabs | TW(X)∩ [now, u] ̸=∅
13 Select any t ∈ TW(X) ∩ [now, u]
14 Remove X from U
15 f(X) := t; now := t
16 Propagate f(X) = t to X’s neighbors in E
17 Enabs := {Y ∈ U | all negative edges from

Y terminate at TPs not in U}
18 return f

STN is consistent if and only if its graph has no
negative cycles (Dechter et al., 1991).

Although checking the consistency of an STN
is important and can be done in polynomial time,
fixing a solution in advance undermines the inher-
ent flexibility of the STN representation. Instead,
it can be desirable to preserve as much flexibility
as possible until actions are actually performed
(i.e., during the “real-time execution”), while min-
imizing real-time computation.

Toward that end, consider the Real-Time Exe-
cution (RTE) algorithm for STNs given in Al-
gorithm 1 (Muscettola et al., 1998).2 It pro-
vides maximum flexibility by maintaining for each
timepoint X a time window TW(X) (initially
[0,∞), Line 2), and providing freedom for which
timepoint to execute next and when to execute
it (Lines 8 to 13). To minimize real-time com-
putation, the effects of each execution decision,
X = t (represented in the pseudocode by setting
f(X) = t at Line 15) are propagated only locally,
to the neighbors of X in the STN graph (i.e.,

2Muscettola et al. (1998) refer to their algorithm
as either the Time Dispatching Algorithm (TDA) or
the Dispatching Execution Controller (DEC). The
RTE algorithm presented here is equivalent, although
organized somewhat differently and using different
notation.

the timepoints connected to X by a single edge)
(Line 16).

After initializing the time windows (Line 2),
the RTE algorithm initializes the current time now
to 0 and the set U of unexecuted timepoints to T
(Line 3); and then the set of enabled timepoints to
those having no outgoing negative edges (Line 4).
(A timepoint Y is enabled for execution if it is
not constrained to occur after any unexecuted
timepoint—equivalently, if there are no negative
edges from Y to any unexecuted timepoint.) Each
iteration of the while loop (Lines 5 to 17) be-
gins by computing the interval [ℓ, u], where ℓ is
the minimum lower bound of the time windows
among the enabled timepoints (i.e., the earliest
time at which something could happen) and u
is the minimum upper bound among those same
time windows (i.e., the deadline by which some-
thing must happen) (Lines 8 and 9).3 The algo-
rithm fails if that interval does not include times
at or after now (Line 10). Next (Line 12), it
selects one of the enabled timepoints X whose
time window TW(X) has a non-empty intersec-
tion with [now, u], and then (Line 13) selects any
time t ∈ TW(X) ∩ [now, u] at which to execute
it. (If [ℓ, u] ∩ [now,∞) is non-empty, then there
must be such an X.) After assigning X to t
(Line 15), it then propagates the effects of that
assignment to X’s neighbors in the STN graph
(Line 16). In particular, for any non-negative edge
(X, δ, V) ∈ E , it updates the time window for V as
follows: TW(V) := TW(V) ∩ (−∞, t + δ]. Simi-
larly, for each negative edge (U,−γ,X), it updates
U ’s time window: TW(U) := TW(U)∩ [t+ γ,∞).
Finally, it updates the set of enabled timepoints
(Line 17) in preparation for the next iteration.

The RTE algorithm for STNs provides maxi-
mal flexibility in that any solution to a consistent
STN can be generated by an appropriate sequence
of choices at Lines 12 to 13. In addition, it re-
quires minimal computation by performing only
local propagation (at Line 16). However, it does
not provide a constraint-satisfaction guarantee for
all runs on consistent STNs, as illustrated by the
sample run-through of the algorithm shown in
Table 1(a), which motivates the work on STN
dispatchability, as follows.

Definition 1 (Dispatchability Muscettola et al.
(1998)). An STN S = (T , C) is dispatchable if ev-
ery run of the RTE algorithm (Algorithm 1) on the
corresponding STN graph G = (T , E) necessarily

3In Algorithm 1, lb(X) and ub(X) respectively
denote the lower and upper bounds from X’s time
window, TW(X).

Iter. Enabs TW(Z) TW(A) TW(C) TW(X) TW(Y) [ℓ, u] now Exec.

Init. {Z} [0,∞] [0,∞) [0,∞) [0,∞) [0,∞) [0,∞) 0 Z := 0
1 {A, Y } — [1,∞) [7,∞) [0,∞) [1,∞) [0,∞) 0 Y := 4
2 {A,X} — [1,∞) [7,5] [6,∞) — [1,∞) 4 A := 8
3 {C,X} — — [9,5] [6,∞) — [6,5] 8 fail

(a) A sample run of the RTE algorithm on the consistent STN from Figure 1.

Iter. Enabs TW(Z) TW(A) TW(C) TW(X) TW(Y) [ℓ, u] now Exec.

Init. {Z} [0,∞) [0,∞) [0,∞) [0,∞) [0,∞) [0,∞) 0 Z := 0
1 {A, Y } — [1,∞) [7,∞) [0,∞) [6,∞) [1,∞) 0 A := 8
2 {C, Y } — — [9, 18] [0,∞) [8,∞) [8, 18] 8 C := 15
3 {Y } — — — [0, 18] [8, 16] [8, 16] 15 Y := 16
4 {X} — — — [18, 18] — [18, 18] 16 X := 18

(b) A sample run of the RTE algorithm on the dispatchable STN from Figure 3.

Table 1: Sample runs of the RTE algorithm.

X

A

B

C

D
−7

−3 1

4

−5

Figure 2: A sample vee-path that dominates a direct
edge.

generates a solution for S.
Muscettola et al. (1998) showed that for con-

sistent STNs, the all-pairs, shortest-paths (APSP)
graph is necessarily dispatchable, but its O(n2)
edges cancel the benefits of local propagation.
Their O(n3)-time edge-filtering algorithm com-
putes an equivalent minimal dispatchable STN
by starting with the APSP graph, then remov-
ing dominated edges (i.e., edges not needed for
dispatchability). A faster O(mn+ n2 log n)-time
algorithm accumulates undominated edges with-
out first building the APSP graph (Tsamardinos
et al., 1998).

Morris (2016) later found a graphical char-
acterization of STN dispatchability in terms of
vee-paths.

Definition 2 (Vee-path (Morris, 2016)). A vee-
path comprises zero or more negative edges fol-
lowed by zero or more non-negative edges.

Figure 2 shows a sample vee-path from X to Y
that dominates the (dashed) direct edge from X
to Y . For this vee-path, the enablement condition
(Line 12) ensures that the RTE algorithm will
execute B before A, and A before X; hence, local
propagation ensures the satisfaction of the edges
(X,−7, A) and (A,−3, B). On the other side, if
the algorithm executes C before B, then the edge
(B, 1, C) is automatically satisfied; otherwise, local
propagation ensures its satisfaction. Similarly,
the RTE algorithm necessarily satisfies the edge

C Z

AY

X
3

−2
10

−1
1

1

0

−
1

−7

−6

Figure 3: An equivalent dispatchable STN graph.

(C, 4, D). Since the algorithm satisfies all the
edges in the vee-path, it also satisfies the direct
edge (X,−5, Y). Hence that edge is not needed
to ensure dispatchability.

Theorem 1 (Morris (2016)). An STN is dispatch-
able iff for each path from any X to any Y in the
STN graph, there is a shortest path from X to Y
that is a vee-path.

Figure 3 shows a dispatchable STN that is
equivalent to the STN from Figure 1 (new edges
are thick and red). It is easy to check that each
path has a corresponding vee-path that is a short-
est path. Table 1(b) shows a sample run of the
RTE algorithm on this dispatchable STN, which
necessarily generates a solution.

RTE complexity. With appropriate data struc-
tures, the RTE algorithm can be implemented to
run in O(n2) worst-case time, while allowing for
maximum flexibility in the selection of the time-
point X to execute next and the time t at which
to execute it. The local propagations involve m
updates, each done in constant time. The set of
enabled timepoints can be implemented by keep-
ing, for each timepoint, a count of its outgoing
negative edges. Whenever a negative edge is pro-
cessed, the count for the source of that edge is
decremented. When the count for a given time-

point reaches 0, that timepoint becomes enabled.
To compute the values of ℓ and u, it suffices to
maintain two min priority queues (Cormen et al.,
2022), one for ℓ and one for u. When a TP X
becomes enabled, it is inserted into both queues
using its lb(X) and ub(X) values as keys. To
compute the desired minimum values requires only
“peeking” at the current minimum value. TPs need
not be extracted from the queues when executed,
but instead can be extracted lazily, as follows.
Whenever a “peek” reveals a value based on an
already-executed TP, that TP can be extracted
at that time; and subsequent peek/extractions
can be done until a peek reveals a value based
on a not-yet-executed TP. In this way, each TP
is inserted and extracted exactly once which, to-
gether with at most m “decrease key” updates,
yields a total cost of O(m+ n log n). The peeks
can be done in constant time and so don’t affect
the overall time. For full flexibility, O(n) worst-
case time is required for selecting the timepoint
X to execute next, which drives the overall O(n2)
worst-case time. The selection of the time t at
which to execute X, if done randomly, can be done
in constant time. Of course, an application may
have domain-specific criteria that would make the
selections of X and t more time-consuming, but
that is beyond the purview of the RTE algorithm.

3 STNU DISPATCHABILITY

A Simple Temporal Network with Uncertainty
(STNU) augments an STN to include contingent
links that can represent actions with uncertain du-
rations (Morris et al., 2001). An STNU is a triple
(T , C,L) where (T , C) is an STN, and L is a set
of contingent links, each of the form (A, x, y, C),
where: A ∈ T is the activation timepoint (ATP);
C ∈ T is the contingent timepoint (CTP); and
0 < x < y < ∞ specifies bounds on the dura-
tion C − A. Typically, an executor controls the
execution of A, but not C. The execution time
for C is only learned in real time, when it hap-
pens, but is guaranteed to satisfy C −A ∈ [x, y].
We let k = |L|; and notate the set of contingent
timepoints as Tc; and the non-contingent (i.e.,
executable) timepoints as Tx = T \Tc.

Each STNU (T , C,L) has a corresponding
graph, (T , E ∪ Elc ∪ Euc), where: (T , E) is the
graph for the STN (T , C); Elc is a set of lower-
case (LC) edges; and Euc is a set of upper-case
(UC) edges. The LC and UC edges correspond
to the contingent links in L, as follows. For each

C Z

AY

X −7

c:
1C

:−
10

1−2

3

−1

−
1

Figure 4: A sample STNU.

contingent link (A, x, y, C) ∈ L, there is an LC

edge A c:x C in Elc and a UC edge C C:−y A in
Euc, respectively representing the uncontrollable
possibilities that the duration C−A might take on
its lower bound x or its upper bound y. For con-
venience, such edges may be notated as (A, c:x,C)
and (C,C:−y,A). Figure 4 shows a sample STNU
graph with a contingent link (A, 1, 10, C).

An STNU is dynamically controllable (DC) if
there exists a dynamic strategy for executing its
non-contingent timepoints such that all of the con-
straints in C will necessarily be satisfied no matter
how the contingent durations turn out—within
their specified bounds (Morris et al., 2001; Huns-
berger, 2009). A strategy is dynamic in that it
can react in real time to observations of contin-
gent executions, but its execution decisions cannot
depend on advance knowledge of contingent dura-
tions. As is common in the literature, this paper
assumes that strategies can react instantaneously
to observations. Morris (2014) presented the first
O(n3)-time DC-checking algorithm for STNUs.
Cairo et al. (2018) gave a O(mn+k2n+kn log n)-
time algorithm that is faster on sparse networks.

Most DC-checking algorithms generate a new
kind of edge, called a wait, that represents a con-
ditional constraint. A wait edge (Y,C:−w,A) rep-
resents the conditional constraint that as long as
C has not yet executed, Y must wait until at least
w after A. In this paper, a wait labeled by the
contingent timepoint C is called a C-wait. Follow-
ing Morris (2014), we define an extended STNU
(ESTNU) to include a set Cw of conditional wait
constraints, and an ESTNU graph to include a
corresponding set Ew of wait edges. (While wait
edges are not necessary for DC-checking, they are
typically necessary for dispatchability.)

Morris (2014) defined the dispatchability of
an ESTNU in terms of its STN projections. A
projection of an ESTNU is the STN that results
from assigning fixed durations to its contingent
links (Morris et al., 2001; Morris, 2014; Hunsberger
and Posenato, 2023).

Definition 3 (Projection). Let S = (T , C,L, Cw)
be an ESTNU, where L = {(Ai, xi, yi, Ci) |
1 ≤ i ≤ k}. Let ω = (ω1, ω2, . . . , ωk) be any k-

C Z

AY

X −7

4
−41−2

3

−1

−
1

Figure 5: The projection of the sample STNU onto
ω = (4).

tuple such that xi ≤ ωi ≤ yi for each i. Then
the projection of S onto ω is the STN Sω =
(T , C ∪ Cω

lc ∪ Cω
uc ∪ Cω

w) given by:

Cω
lc = {(Ai, ωi, Ci) | 1 ≤ i ≤ k}

Cω
uc = {(Ci,−ωi, Ai) | 1 ≤ i ≤ k}
Cω
w = {(X,−min{w,ωi}, Ai) |

(X,Ci:− w,Ai) ∈ Cw}

The constraints in Cω
lc ∪ Cω

uc together fix the du-
ration of each contingent link (Ai, xi, yi, Ci) to
Ci−Ai = ωi. Each wait edge (X,Ci:−w,Ai) ∈ Cw
projects onto either the STN edge (X,−w,Ai) if
w ≤ ωi (i.e., if the wait expires before Ci executes)
or the STN edge (X,−ω,Ai) (i.e., if Ci executes
before Ai + w).

Figure 5 shows the projection of the sample
STNU from Figure 4 onto ω = (4). Note that this
projection is not dispatchable (as an STN) since,
for example, there is no shortest path from C to
Y that is a vee-path.

Definition 4 (ESTNU dispatchability (Morris,
2014)). An ESTNU is dispatchable if all of its
STN projections are dispatchable (as STNs).

Morris (2014) argued informally that a dispatch-
able ESTNU (Definition 4) would provide a real-
time execution guarantee, but did not specify an
RTE algorithm for ESTNUs. However, he showed
that his O(n3)-time DC-checking algorithm, mod-
ified to generate wait edges, outputs an equiva-
lent dispatchable ESTNU when given a DC input.
Hunsberger and Posenato (2023) recently provided
an O(mn+ kn2 + n2 log n)-time algorithm that is
faster on sparse graphs.

Figure 6(a) shows a dispatchable ESTNU that
is equivalent to the STNU from Figure 4. Fig-
ure 6(b) shows its projection onto ω = (4), which
is dispatchable (as an STN).

4 RTE ALGORITHM FOR
ESTNUs

This section specifies a real-time execution algo-
rithm for ESTNUs, called RTE∗, whose high-level

C Z

AY

X

−
6

c:
1C

:−
10

C: − 9

−2

3

1

(a) Dispatchable ESTNU.

C Z

AY

X

−
6

4
−4

−4

−2

3

1

(b) Its projection onto ω = (4).

Figure 6: A dispatchable ESTNU (top) that is equiv-
alent to the STNU from Figure 4 and one of its pro-
jections (bottom).

Algorithm 2: RTE∗: real-time execution for
ESTNUs

Input: S = (Tx ∪ Tc, C,L, Cw), an ESTNU
Output: A function f : (Tx ∪ Tc) → R or

fail
1 D := RTE∗

init(Tx, Tc) // Initialization

2 while D.Ux ∪ D.Uc ̸= ∅ do // Some TPs unexec.

3 ∆ := RTE∗
genD(D)// Generate exec. decision

4 if ∆ = fail then
5 return fail

6 (ρ, τ) := Observec(S, D,∆)// Observe CTPs

7 D := RTE∗
update(D,∆, (ρ, τ))// Update in D

8 if D = fail then
9 return fail

10 return D.f

iterative operation is given as Algorithm 2. On
each iteration, the algorithm first generates an
execution decision (Line 3). Next, it observes
whether any contingent TPs happened to execute
(Line 6). Since, as discussed below, the execution
of contingent TPs is not controlled by the RTE∗

algorithm, observation is represented here by an
oracle, Observec. Afterward, the RTE∗ algorithm
responds by updating information (Line 7). In
successful instances, the RTE∗ algorithm returns a
complete set of variable assignments for the time-
points in T (equivalently, a function f : T → R).

The RTE∗ algorithm maintains information
in a data structure, called RTEdata, that has the
following fields:

• Ux (the unexecuted executable timepoints),

• Uc (the unexecuted contingent timepoints),

• Enabsx (the enabled executable timepoints),

• now (the current time),

Algorithm 3: RTE∗
init : Initialization

Input: Tx, executable TPs;
Tc, contingent TPs

Output: D, initialized RTEdata structure
1 D = new(RTEdata)
2 D.Ux := Tx; D.Uc := Tc; D.now = 0; D.f = ∅
3 D.Enabsx ={X ∈ Tx | X has no

outgoing negative edges}
4 foreach X ∈ Tx do
5 D.TW(X) := [0,∞)
6 D.AcWts(X) := ∅
7 return D

• f (a set of variable assignments),

• for each executable timepoint X ∈ Tx,
TW(X) = [lb(X), ub(X)] (time window for X),

• AcWts(X) (the activated waits for X, see be-
low).

A new RTEdata instance, D, is initialized by the
RTE∗

init algorithm (Algorithm 3). Note that for
ESTNUs, an executable timepoint X is enabled if
all of its outgoing negative edges—including wait
edges—point at already executed timepoints.

Activated Waits. A wait edge such as
(X,C:−w,A) represents a conditional constraint
that as long as C has not yet executed, X must
wait at least w after A. Once the activation time-
point A for the contingent link (A, x, y, C) has
been executed, say, at some time a, we say that
the wait edge has been activated, which the RTE∗

algorithm keeps track of by inserting an entry
(a+ w,C) into the set AcWts(X). There are two
ways for this wait to be satisfied: C can execute
early (i.e., before a+ w) or the wait can expire
(i.e., the current time passes a+w). In response to
either event, the entry (a+w,C) is removed from
AcWts(X). In general, if AcWts(X) is non-empty,
X cannot be executed.

Generate Execution Decision. Hunsberger
(2009) formally characterized dynamic execution
strategies for STNUs in terms of real-time execu-
tion decisions (RTEDs). An RTED can have one
of two forms: Wait or (t, χ). A Wait decision can
be glossed as “wait for a contingent timepoint to
execute”. A (t, χ) decision can be glossed as “if
no contingent timepoints execute before time t,
then execute the timepoints in the set χ”. Given
the assumption about instantaneous reactivity, it
suffices to limit χ to a single timepoint.

Algorithm 4: RTE∗
genD : Generate execution de-

cision

Input: D, an RTEdata structure
Output: Exec decn: Wait or (t, V); or fail

1 if D.Enabsx = ∅ then
2 return Wait

3 foreach X ∈ D.Enabsx do
// Maximum wait time for X

4 wt(X) = max{w | ∃(w,) ∈ D.AcWts(X)}
// Greatest lower bound for X

5 glb(X) = max{D.lb(X), wt(X)}
// Earliest possible next execution

6 tL = min{glb(X) | X ∈ D.Enabsx}
// Latest possible next execution

7 tU = min{D.ub(X) | X ∈ D.Enabsx}
8 if [tL, tU] ∩ [D.now,∞) = ∅ then
9 return fail

10 Select any V ∈ D.Enabsx for which
[glb(X), ub(X)] ∩ [D.now, tU] ̸= ∅

11 Select any t ∈ [glb(V), ub(V)] ∩ [D.now, tU]
12 return (t, V)

Algorithm 4 computes the next RTED for one
iteration of the RTE∗ algorithm. First, at Line 1,
if there are no enabled timepoints, then the only
viable RTED is Wait. Otherwise, the algorithm
generates an RTED of the form (t, V) for some t ∈
R and some enabled TP V . Lines 3 to 5 compute,
for each enabled TP X, the maximum wait time
wt(X) among all of X’s activated waits (or −∞
if there are none), and then compares that with
the lower-bound lb(X) from X’s time window to
generate the earliest time, glb(X), at which X
could be executed.4 Then, at Line 6, it computes
the earliest possible time tL that any enabled
TP could be executed next. Line 7 computes the
latest time at which the next execution event could
occur. The algorithm fails if the interval between
the earliest possible time and the latest does not
include times at or after now (Line 9). Otherwise,
it selects any one of the enabled timepoints V
whose time window includes times in [D.now, tU]
(Line 10); and any time t ∈ [glb(V), ub(V)] ∩
[D.now, tU] at which to execute it (Line 11). (Note
the flexibility inherent in the selection of both V
and t.) The algorithm outputs the RTED (t, V)
(Line 12).

Observation. Once the RTE∗ algorithm gener-
ates an execution decision (e.g., “If nothing hap-

4D.lb(X) and D.ub(X) respectively denote the
lower and upper bounds of X’s time window, D.TW(X).

Algorithm 5: Observec: Oracle

Input: S = (Tx ∪ Tc, C,L, Cw), an ESTNU; D,
an RTEdata structure; ∆, an RTED

Output: (ρ, τ), where ρ ∈ R and τ ⊆ D.Uc

1 f := D.f ; now := D.now
// Get ACLs: currently active contingent links

2 ACLs := {(A, x, y, C) ∈ L | f(A) ≤ now,
f(C) = ⊥}

// Waiting forever

3 if ACLs = ∅ and ∆ = Wait then
4 return (∞, ∅)
// No CTPs execute at or before time t

5 if ACLs = ∅ and ∆ = (t, V) then
6 return (t, ∅)
// Compute bounds for possible contingent

executions

7 lbc := min{f(A) + x | (A, x, y, C) ∈ ACLs}
8 ubc := min{f(A) + y | (A, x, y, C) ∈ ACLs}
9 Select any tc ∈ [lbc, ubc]

// Oracle decides not to execute any CTPs yet

10 if ∆ = (t, V) and tc > t then
11 return (t, ∅)

// Oracle decides to execute one or more CTPs

12 τ∗ := {C | (A, x, y, C) ∈ ACLs, tc ∈
[a+ x, a+ y], where a = f(A)}

13 Select τ : any non-empty subset of τ∗

14 return (tc, τ)

pens before time t, then execute V ”), it must wait
to see what happens (e.g., whether some contin-
gent timepoints happen to execute). Since the
execution of contingent TPs is not controlled by
the RTE∗ algorithm, we represent it within the
algorithm by an oracle, called Observec, whose
pseudocode is given in Algorithm 5.

The oracle, Observec, non-deterministically
decides whether to execute any contingent TPs
and, if so, when. At Line 2, it computes the set
of currently active contingent links (i.e., those
whose activation TPs have been executed, but
whose contingent TPs have not yet). If there are
none, then no CTPs can execute. In that case,
Observec returns (∞, ∅) in response to a wait
decision (Line 4), or (t, ∅) in response to a (t, V)
decision (Line 6). Otherwise (i.e., there are some
active contingent links), Observec computes the
range of possible times for the next contingent
execution event and arbitrarily selects some time
tc within that range (Lines 7 to 9). Now, if the
pending RTE∗ decision is (t, V), and tc happens
to be greater than t, then the oracle has effectively
decided not to execute any contingent TPs yet

Algorithm 6: RTE∗
update : update information in D

Input: S, an ESTNU; D, an RTEdata
structure; ∆, an RTED (Wait or
(t, V)); (ρ, τ), an observation, where
ρ ∈ R and τ ⊆ D.Uc

Output: Updated D or fail
// Case 0: Failure (waiting forever)

1 if ρ = ∞ then
2 return fail

// Case 1: Only contingent timepoints executed

3 if ∆ = Wait or (∆ = (t, V) and ρ < t) then
4 HCE(S, D, ρ, τ)
5 else

// Case 2: Executable timepoint V executes at t

6 HXE(S, D, t, V)
// Case 3: CTPs also execute at t

7 if τ ̸= ∅ then
8 HCE(S, D, t, τ)

9 D.now := ρ
10 return D

(Line 10). Otherwise, it computes the set τ∗ of
CTPs that could execute at time tc (Line 12) and
then arbitrarily selects a non-empty subset of τ∗

to actually execute at time tc (Line 13).

Update. The response of the RTE∗ algorithm to
its observation of possible CTP executions is han-
dled by the RTE∗

update algorithm (Algorithm 6).
If ρ = ∞, which can only happen when a Wait
decision was made but there were no active con-
tingent links, then the RTE∗ algorithm would
wait forever and, hence, fail (Line 2). Otherwise,
ρ < ∞. If the decision was wait, then one or
more contingent TPs must have executed at ρ
(and no executable TPs), whence (Lines 3 to 4)
the relevant updates are computed by the HCE
algorithm (Algorithm 7). The same updates are
also needed if the decision was (t, V), where ρ < t
(Lines 3 to 4).

The HCE algorithm (Algorithm 7) updates
D in response to contingent executions as follows.
Lines 2 to 3 record that C occurred at ρ by adding
the variable assignment (C, ρ) to D.f and remov-
ing C from D.Uc. Line 4 updates the time windows
for neighboring timepoints, exactly like the RTE
algorithm for STNs. Since the execution of C
automatically satisfies all C-waits, Line 5 removes
any C-waits from the D.AcWts sets. Finally, Line 6
updates the set of enabled executable TPs in case
the execution of C or the deletion of C-waits en-
ables some new TPs.

Algorithm 7: HCE: Handle contingent execu-
tions

Input: S, an ESTNU; D, an RTEdata; ρ ∈ R,
an execution time; τ ⊆ Uc, CTPs to
execute at ρ

Result: D updated
1 foreach C ∈ τ do
2 Add (C, ρ) to D.f
3 Remove C from D.Uc

4 Update time windows for neighbors of C
5 Remove C-waits from all D.AcWts sets
6 Update D.Enabsx due to incoming

neg. edges to C or any deleted C-waits

Algorithm 8: HXE: Handle a non-contingent
execution

Input: S, an ESTNU; D, an RTEdata
structure; t ∈ R; V ∈ Ux

Result: D updated
1 Add (V, t) to D.f
2 Remove V from D.Ux

3 Update time windows for neighbors of V
4 Update D.Enabsx due to any negative

incoming edges to V
5 if V is activation TP for some CTP C then
6 foreach (Y,C:−w, V) ∈ Ew do
7 Insert (t+ w,C) into D.AcWts(Y)

In the remaining cases (Lines 5 to 8) of
RTE∗

update (Algorithm 6), the decision is (t, V)
and ρ = t. In other words, no contingent TPs ex-
ecuted before time t and, so, the executable time-
point V must be executed at t. The corresponding
updates are handled by the HXE algorithm (Al-
gorithm 8). The HXE updates are the same as
those done by the RTE algorithm for STNs, ex-
cept that if V happens to be an activation TP for
some contingent TP C, then information about
all C-waits must be entered into the appropriate
AcWts sets (Lines 5 to 7).

Finally, in the (extremely rare) case (of Algo-
rithm 6, Line 8) where one or more CTPs happen
to execute precisely at time t (i.e., simultaneously
with V), the HCE algorithm (Algorithm 7) per-
forms the needed updates, as in Case 1. Finally,
Algorithm 6 updates the current time to ρ (Line 9).

Table 2 shows sample runs of the RTE∗ al-
gorithm on the dispatchable ESTNU from Fig-
ure 6(a). In Table 2(a), C executes early (at A+5);
in Table 2(b), C executes late (at A+ 10). Both
runs result in variable assignments that satisfy all

of the constraints in C.

RTE∗ complexity. The worst-case complex-
ity of the RTE∗ algorithm is similar to that
of the RTE algorithm except for the mainte-
nance of the AcWts sets (which is handled by
the HCE and HXE algorithms). The AcWts
sets can also be implemented using min prior-
ity queues. Since there are at most nk wait edges,
each of which gets inserted into an AcWts set ex-
actly once, and also gets deleted exactly once, the
worst-case complexity over the entire RTE∗ algo-
rithm is O(nk + (nk) log(nk)) = O(nk log(nk)).
This assumes that the deletions are done lazily,
as described earlier for the other min priority
queues. Therefore, the overall complexity is
O(m+n log n+nk log(nk)) = O(m+nk log(nk)).
Finally, although we provide pseudocode for the
Observec oracle, that was just to highlight the
range of possible observations. From the perspec-
tive of the RTE∗ algorithm, the oracle presents
observations in real time and, hence, there is no
computation cost associated with them.

4.1 Main Theorem

Theorem 2. Let S = (T , C,L, Cw) be an ESTNU.
Every run of the RTE∗ algorithm on S corresponds
to a run of the RTE algorithm for STNs on some
STN projection Sω of S, yielding the same variable
assignments to the timepoints in T .

The following definitions, closely related to def-
initions in Morris (2016) and Hunsberger (2009),
are used in the proof.

Definition 5 (Execution sequence). A (possibly
partial) execution sequence is any sequence of the
form σ = ((X1, t1), (X2, t2), . . . , (Xh, th)) where
{X1, X2, . . . , Xh} ⊆ T and t1 ≤ t2 ≤ · · · ≤ th.
For any (X, t) ∈ σ, we write σ(X) = t. For any
X that doesn’t appear in σ, we write σ(X) = ⊥.
In addition, we let max(σ) = th notate the time
of the latest execution event in σ.

Note that the “functions” D.f and f that are
incrementally computed by the RTE∗ and RTE
algorithms may be viewed as execution sequences;
and that D.now = max(D.f) and now = max(f).

Definition 6 (Pre-history). The pre-
history πσ of an execution sequence
σ = ((X1, t1), . . . , (Xh, th)) is a set that specifies
the duration, σ(C)− σ(A), of each contingent link
(A, x, y, C) for which σ(A), σ(C) ≤ max(σ), and
constrains the duration of any currently active con-
tingent link (A′, x′, y′, C ′), where σ(A′) ≤ max(σ)

Iter. TW(A) TW(X) TW(Y) AcWts(A) AcWts(X) AcWts(Y) now Enabsx RTED Obs Exec

Init. [0,∞) [0,∞) [0,∞) ∅ ∅ ∅ 0 {Z} (0,Z) (0, ∅) Z := 0
1 [6,∞) [0,∞) [0,∞) ∅ ∅ ∅ 0 {A} (7, A) (7, ∅) A := 7
2 — [0,∞) [0,∞) — ∅ {(16, C)} 7 {Y } (16, Y) (12, {C}) C := 12
3 — [0, 15] [0, 13] — ∅ ∅ 12 {Y } (13, Y) (13, ∅) Y := 13
4 — [15, 15] — — ∅ — 13 {X} (15, X) (15, ∅) X := 15

(a) Sample run where C executes early (at A+ 5).

Iter. TW(A) TW(X) TW(Y) AcWts(A) AcWts(X) AcWts(Y) now Enabsx RTED Obs Exec

Init. [0,∞) [0,∞) [0,∞) ∅ ∅ ∅ 0 {Z} (0,Z) (0, ∅) Z := 0
1 [6,∞) [0,∞) [0,∞) ∅ ∅ ∅ 0 {A} (7, A) (7, ∅) A := 7
2 — [0,∞) [0,∞) — ∅ {(16, C)} 7 {Y } (16, Y) (16, ∅) Y := 16
3 — [18,∞) — — ∅ — 16 {X} (22, X) (17, {C}) C := 17
4 — [18, 20] — — ∅ — 17 {X} (19, X) (19, ∅) X := 19

(b) Sample run where C executes late (at A+ 10).

Table 2: Sample runs of the RTE∗ algorithm on the dispatchable ESTNU from Figure 6(a).

but σ(C ′) = ⊥, to C ′ − A′ ≥ max(σ) − A′ (i.e.,
C ′ ≥ max(σ)).

Definition 7 (Respect). A projection Sω respects
a pre-history π if it is consistent with the con-
straints on the durations specified by π.

Definition 8 (RTE-compliant). A (possibly par-
tial) execution sequence σ is RTE-compliant for
an ESTNU S if it can be generated by some run
of the RTE algorithm on every projection Sω that
respects the pre-history πσ.

Proof. This proof incrementally analyzes an arbi-
trary execution sequence generated by the RTE∗

algorithm on the ESTNU S, placing no restric-
tions on the choices it makes along the way, while
constructing in parallel a corresponding run of the
RTE algorithm on an incrementally specified pro-
jection of S such that, in the end, both algorithms
generate the same set of variable assignments. In
what follows, information computed by RTE∗ is
prefixed by D; non-prefixed terms by RTE. The
proof uses induction to show that at the beginning
of each iteration the following invariants hold:

(P1) D.f = f (i.e., the current, typically partial
execution sequences are the same); and

(P2) f is RTE compliant for S.

Base Case. D.f = ∅ = f , and ∅ is trivially
RTE-compliant for S.

Recursive Case. Suppose (P1) and (P2) hold
at the beginning of some iteration. First, note
that D.f = f implies that D.Ux ∪ D.Uc = U . In
the case where these sets are both empty, both
algorithms terminate, signaling that D.f = f is
a complete assignment. Otherwise, both sets are

non-empty and we must show that (P1) and (P2)
hold at the start of the next iteration.

Note that D.now = max(D.f) = max(f) = now.
Next, we show that D.Enabsx = Enabs ∩ Ux. This
follows because each negative edge in S is either
an ordinary edge or a wait edge, both of which
project onto negative edges in every projection.
Since D.Enabsx only includes executable TPs, the
equality holds.

Case 1: D.Enabsx = ∅. Therefore, Enabs ⊆ Uc.
Then the RTE∗ algorithm generates a Wait de-
cision. Now, Enabs = ∅ would cause RTE to
fail (Algorithm 1, Line 7), contradicting the dis-
patchability of any STN projection from this point
onward. Therefore, Enabs ̸= ∅ and, thus, there ex-
ists at least one enabled CTP C which, given the
negative edge from C to its activation TP, implies
that its contingent link is currently active. There-
fore, Lines 7 to 13 of the oracle (Algorithm 5)
would select an observation of the form (tc, τ),
where τ ̸= ∅.

Now, by (P2), f is RTE-compliant; hence it
can be generated by any projection that respects
the pre-history πf . Next, let f ′ be the execu-
tion sequence obtained by executing the CTPs
in τ at time tc; and let πf ′ be the corresponding
pre-history. Among the projections that respect
the pre-history πf are those that also respect πf ′ .
Since the RTE algorithm, when applied to any of
those projections, must execute the CTPs in τ at
time tc, it follows that f ′ is RTE compliant for
S (i.e., (P2) holds at the start of the next iter-
ation). And since the HCE algorithm executes
the CTPs in τ at tc, it follows that (P1) holds
at the start of the next iteration. Finally, the

other updates done by HCE are equivalent to
those done by RTE, as follows. Removing any C-
waits for C ∈ τ corresponds to the satisfaction of
the corresponding projected constraints since, for
example, a C-wait (W,C:−8, A) projects to the
negative edge (W,−5, A) in the projection where
C − A = 5, whose lower bound of A + 5 is au-
tomatically satisfied when C executes at A + 5.
And RTE∗’s updating of D.Enabsx is equivalent
to RTE’s updating of Enabs given that wait edges
project onto ordinary negative edges.

Case 2: D.Enabsx ̸= ∅. Here, the RTE∗
genD

algorithm (Algorithm 4) would, at Lines 3 to 12,
generate an execution decision of the form (t, V).
Now, for any (executable) X ∈ Enabsx, its up-
per bound is computed based solely on propaga-
tions from executed TPs along non-negative edges.
Given that D.f = f , it follows that D.ub(X) =
ub(X) for each X ∈ D.Enabsx, regardless of the f -
respecting projection that RTE is applied to. Sim-
ilar remarks apply to the lower bound for each X
except that D.glb(X) ≥ lb(X). To see this, note
that although propagations along ordinary neg-
ative edges done by RTE∗ are identical to those
done by RTE, the activated waits in AcWts(X)
may impose stronger constraints. For example,
consider an activated wait edge (X,Ci:−7, Ai),
which imposes a lower bound of Ai + 7 on X. In
a projection where ωi = 4 < 7, this edge projects
onto the ordinary negative edge (X,−4, Ai), which
imposes the weaker lower bound of Ai + 4 on X.
In contrast, in a projection where ωi = 9 ≥ 7,
the wait edge projects onto the ordinary negative
edge (X,−7, Ai), which imposes the lower bound
of Ai+7 on X. In general, it therefore follows that
[D.glb(X), D.ub(X)] ⊆ [lb(X), ub(X)]. To ensure
that the RTE∗

genD algorithm does not fail at Line 9,

we must show that D.glb(X) ≤ D.ub(X). To see
why, let Sω be any projection that respects f , but
also specifies maximum durations for all of the cur-
rently active contingent links. In Sω, all C-waits
project onto negative edges of the same length,
which implies that D.glb(X) = lb(X) ≤ ub(X) =
D.ub(X), since the dispatchability of all projec-
tions ensures that RTE cannot fail, and hence
[D.tl, D.ul] ∩ [D.now,∞) ̸= ∅. Therefore, RTE∗

genD

will generate an RTED of the form (t, V).
Case 2a: A (ρ, τ) observation, where ρ < t.

This case can be handled similarly to Case 1.
Case 2b: A (t, ∅) observation.. Here, RTE∗ exe-

cutes V at time t. Since t ∈ [D.glb(V), D.ub(V)] ⊆
[lb(V), ub(V)] it follows that executing V at t is a
viable choice for the RTE algorithm for every pro-
jection that (1) respects f ; and (2) constrains the

duration of each active contingent link (A, x, y, C)
to satisfy C − A ≥ t − f(A). (And such projec-
tions exist, since otherwise the oracle could not
have generated the observation (t, ∅).) Therefore,
(P1) and (P2) will necessarily hold at the start of
the next iteration, when RTE is restricted to such
projections. Finally, note that the updates done
by the HXE algorithm are exactly the same as
those done by RTE, except for the updating of
the activated waits in the case where V happens
to be an activation timepoint. However, insert-
ing an entry (t + w,Ci) into the set D.AcWts(Y)
in response to a wait edge (Y,Ci:−w, V), merely
ensures that the bound for the corresponding pro-
jected edge (Y,−γ, V) will be respected by RTE∗,
where γ = min{w,ωi} and ωi specifies the dura-
tion of the relevant contingent link.

Case 2c: A (t, τ) observation, where τ ̸= ∅.
This case is similar to a combination of Case 1
(with ρ = t) and Case 2b.

Corrolary 1. An ESTNU S is dispatchable if
and only if every run of the RTE∗ algorithm on S
outputs a solution for the ordinary constraints in
S.

Proof. By Theorem 2, S is dispatchable if and
only if each run of RTE∗ generates a complete
assignment that can also be generated by a run of
RTE on some projection Sω. But by Definitions 4
and 1, S is dispatchable if and only if every one of
its STN projections is dispatchable (i.e., every run
of RTE on any of the STN projections generates
a solution).

5 CONCLUSION

The main contributions of this paper are:

1. to provide a formal definition of a real-time
execution algorithm for ESTNUs, called RTE∗,
that provides maximum flexibility while requir-
ing only minimal computation; and

2. to formally prove that an ESTNU S =
(T , C,L, Cw) is dispatchable (according to the
definition in the literature) if and only if every
run of RTE∗ on S necessarily satisfies all of the
constraints in C no matter how the contingent
durations play out in real time.

In so doing, the paper fills an important gap in
the algorithmic and theoretic foundations of the
dispatchability of Simple Temporal Networks with
Uncertainty.

Since the worst-case complexity of the RTE∗

algorithm is O(m+ nk log(nk)), future work will
focus on generating equivalent dispatchable ES-
TNUs having the minimum number of (ordinary
and wait) edges.

REFERENCES

Cairo, M., Hunsberger, L., and Rizzi, R. (2018). Faster
Dynamic Controllablity Checking for Simple Tem-
poral Networks with Uncertainty. In 25th Inter-
national Symposium on Temporal Representation
and Reasoning (TIME-2018), volume 120 of LIPIcs,
pages 8:1–8:16.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. (2022). Introduction to Algorithms, 4th
Edition. MIT Press.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal
Constraint Networks. Artificial Intelligence, 49(1-
3):61–95.

Hunsberger, L. (2009). Fixing the semantics for dy-
namic controllability and providing a more practical
characterization of dynamic execution strategies. In
16th International Symposium on Temporal Repre-
sentation and Reasoning (TIME-2009), pages 155–
162.

Hunsberger, L. and Posenato, R. (2023). A Faster
Algorithm for Converting Simple Temporal Net-
works with Uncertainty into Dispatchable Form.
Information and Computation, 293(105063):1–21.

Morris, P. (2014). Dynamic controllability and dis-
patchability relationships. In Int. Conf. on the Inte-
gration of Constraint Programming, Artificial Intel-
ligence, and Operations Research (CPAIOR-2014),
volume 8451 of LNCS, pages 464–479. Springer.

Morris, P. (2016). The Mathematics of Dispatchability
Revisited. In 26th International Conference on
Automated Planning and Scheduling (ICAPS-2016),
pages 244–252.

Morris, P., Muscettola, N., and Vidal, T. (2001). Dy-
namic control of plans with temporal uncertainty.
In 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI-2001), volume 1, pages 494–499.

Muscettola, N., Morris, P. H., and Tsamardinos, I.
(1998). Reformulating Temporal Plans for Effi-
cient Execution. In 6th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR-
1998), pages 444–452.

Tsamardinos, I., Muscettola, N., and Morris, P. (1998).
Fast Transformation of Temporal Plans for Efficient
Execution. In 15th National Conf. on Artificial
Intelligence (AAAI-1998), pages 254–261.

