
Recent Advances in Temporal Networks forPlanning and Scheduling
Luke HunsbergerVassar CollegePoughkeepsie, NY USA

hunsberger@vassar.edu

ICAPS-2023 TutorialJuly 9, 2023

Luke Hunsberger Recent Advances in Temporal Networks 1 / 249

Acknowledgments

⋆ Parts of this tutorial draw from an Invited Talk at the TIME-2021Symposium on Temporal Representation and Reasoning by LukeHunsberger (Vassar College) and Roberto Posenato (Universityof Verona).
⋆ This tutorial was supported in part by NSF Award # 1909739:

RI: Small: RUI: Automated Reasoning about Time
– Methods and Analysis.

Luke Hunsberger Recent Advances in Temporal Networks 2 / 249

Outline I
1 Simple Temporal Networks (STNs)Introduction to STNsSTN Foundations
2 Consistency-Checking Algorithms for STNsFloyd-Warshall AlgorithmBellman-Ford Algorithm and FriendsDijkstra’s AlgorithmJohnson’s Algorithm
3 CythonIntroduction to CythonCython Code for STNs
4 Real-Time Execution and Dispatchability for STNsMotivating DispatchabilityFiltering Algorithm for STN DispatchabilityMore Efficient STN Dispatchability Algorithm
5 Simple Temporal Networks with Uncertainty (STNUs)

Luke Hunsberger Recent Advances in Temporal Networks 3 / 249

Outline II
6 DC-Checking Algorithms for STNUsMorris’ 2006 O(n4)-time DC-checking algorithmMorris’ 2014 O(n3) DC-checking algorithmThe RUL− DC-checking AlgorithmThe RUL2021 Algorithm
7 Dispatchability for STNUsMotivating Dispatchability for STNUsMorris’ 2014 Algorithm for STNU DispatchabilityFaster STNU Dispatchability Alg.: [Hunsberger and Posenato, 2023]
8 Conditional Simple Temporal Networks (CSTNs)
9 Conditional STNs with Uncertainty (CSTNUs)

10 CSTNU with Disjunction (CDTNUs)
Luke Hunsberger Recent Advances in Temporal Networks 4 / 249

Simple Temporal Networks (STNs)

Luke Hunsberger Recent Advances in Temporal Networks 5 / 249

Introduction to STNs

Luke Hunsberger Recent Advances in Temporal Networks 6 / 249

Simple Temporal Networks
Overview

Temporal networks are data structures for representing andreasoning about temporal constraints on activities.
A Simple Temporal Network (STN) is the most basic kind oftemporal network:

1 An STN can accommodate such constraints as release times,deadlines, precedence constraints, and duration constraints.
[Dechter et al., 1991]

2 The fundamental computational tasks associated withSTNs—including checking consistency and managing
execution—can be done in polynomial time.
[Dechter et al., 1991; Tsamardinos et al., 1998]

STNs form the core of numerous more expressive kinds oftemporal networks.
Luke Hunsberger Recent Advances in Temporal Networks 7 / 249

Simple Temporal Networks
Research and Applications

STNs are used as a temporal reasoning tool for research andreal-world applications.
In September 2021, a search of the literature for Simple
Temporal Networks* found:

> 1700 research articles in Google Scholar(having the subject in any part of the article);
242 research articles in Scopus(having the subject in title or abstract)

The most cited papers on STNs fall mainly within two areas:
planning/scheduling for robots

industrial, business, and health-care management systems
*The query string was "simple temporal constraint network" OR "simple temporal

network" OR "simple temporal problem" OR "simple temporal constraint problem"
OR "simple temporal constraint networks" OR "simple temporal networks"

Luke Hunsberger Recent Advances in Temporal Networks 8 / 249

Simple Temporal Networks
Applications in planning/scheduling for robots

Summary of articles with more than 150 citations in Google Scholar.
Remote Agent (RA): on-board controller for Deep Space One,NASA’s first New Millennium mission [Muscettola et al., 1998a]

Needs flexible plans, runs multiple parallel threads of planningand scheduling, uses fast constraint propagation algorithms.Fast constraint propagation obtained using STNs and their localdispatchable property.
Planners such as RAX-PS [Jonsson et al., 2000], MAPGEN [Ai-Chang
et al., 2004; Bresina et al., 2005], KIRK [Kim et al., 2001], VHPOP [Younes
and Simmons, 2003], EUROPA-2 [Frank and Jónsson, 2003],CRIKEY3 [Coles et al., 2008], OPTIC [Benton et al., 2012],IXTET-EXE [Lemai and Ingrand, 2004],. . .
Control component for Autonomous Underwater Vehicles [McGann
et al., 2008]

Luke Hunsberger Recent Advances in Temporal Networks 9 / 249

Simple Temporal Networks
Mars Exploration Rover (MER) [Bresina et al., 2005]

In constraint-based planning,actions and states are describedas holding over intervals of time.
The temporal extent of an actionor state is specified in terms ofstart and end times, representedby variables, connected byconstraints.
Typically, any partial plan, whichis a set of activities connected byconstraints, gives rise to a SimpleTemporal Network, that admits alow-order checking algorithm. Typical plan with temporal constraints.

∗Figures are from [Bresina et al., 2005]
Luke Hunsberger Recent Advances in Temporal Networks 10 / 249

Simple Temporal Networks
Applications in industrial, business and health-care management systems

Summary of articles with more than 60 citations in Google Scholar.
Temporal reasoning in workflows [Bettini et al., 2002; Cesta et al., 2011;
Combi and Posenato, 2009]
Temporal reasoning in health-care systems [Anselma et al., 2006;
Combi et al., 2009; Duftschmid et al., 2002; Zhou et al., 2006]
Scheduling (in industrial processes) [Cesta et al., 2002; Ruml et al.,
2005; Smith et al., 2007; Yoon and Lee, 2005]
Chronicles on-line recognition [Ghallab, 1996]
Dial-A-Ride Problem with Transfers [Masson et al., 2014]
Image pose reconstruction [Dabral et al., 2018]
IBM ILOG CP optimizer for scheduling [Laborie et al., 2018]
. . .

Luke Hunsberger Recent Advances in Temporal Networks 11 / 249

Simple Temporal Networks
The Dial-A-Ride Problem with Transfers [Masson et al., 2014] 1/2

The Dial-A-Ride Problem with Transfers(DARPT): find set of minimum costroutes to satisfy a set of transportationrequests.
Request = transporting a set of users from aset of pickup points to a set of deliverypoints.
Users associated with distinct requests canshare a vehicle if its capacity not exceeded.
Max. ride time associated with each request.
Users can be transferred from one vehicle toanother at intermediate points.
Goal: Minimize total distance traveled whilestaying within maximum ride time for eachuser.

DARPT is NP-hard.

pi must go to di . 1 vehicle. Temporalranges allowed for pickup/delivery.DARPT solution is 20% more efficient.
∗Figures are from [Masson et al., 2014]

Luke Hunsberger Recent Advances in Temporal Networks 12 / 249

Simple Temporal Networks
The Dial-A-Ride Problem with Transfers [Masson et al., 2014] 2/2

Solution algorithm based on AdaptiveLarge Neighborhood Search (ALNS)
It destroys and repairs a solution iterativelyto improve it.
Heuristic operators for either destroying(removing requests from routes) or repairing(reinserting requests) the solution.
Each possible solution must satisfy allconstraints (feasibility).
Evaluating route feasibility for the DARPT ⇔proving the consistency of an STN.

STNs have been employed because it isnecessary to check a large number ofpossible solutions—which can be donevery efficiently with STNs.
pi must go to di . 1 vehicle. Rangesare allowed temporal range forpickup/delivery.

∗Figures are from [Masson et al., 2014]

Luke Hunsberger Recent Advances in Temporal Networks 13 / 249

Simple Temporal Networks
Features and Benefits

An STN has time-points and (simple) temporal constraints.
STNs are expressive: can represent deadlines, release times,duration constraints, and inter-action constraints.
STNs are flexible: Time-points can “float”;not “nailed down” until they are executed.
Each STN has a graphical representation:

•

•

•

•

•

•

Efficient algorithms exist for determining consistency, managingreal-time execution, accommodating new constraints, etc.
Luke Hunsberger Recent Advances in Temporal Networks 14 / 249

STN Foundations

Luke Hunsberger Recent Advances in Temporal Networks 15 / 249

Simple Temporal Network
Definition [Dechter et al., 1991]

Definition 1 (Simple Temporal Network)
A Simple Temporal Network (STN) is a pair, S = (T , C), where:

T is a set of real-valued variables called time-points; and
C is a set of binary constraints, each of the form:

Y − X ≤ δ

where X ,Y ∈ T and δ ∈ R.

Luke Hunsberger Recent Advances in Temporal Networks 16 / 249

Simple Temporal Network
The Zero Time-Point, Z

A special time-point, Z, whose value is fixed at 0.
Binary constraints involving Z are equivalent to unary constraints.

Example 1
X − Z ≤ 7 ⇐⇒ X ≤ 7

Z − X ≤ −3 ⇐⇒ X ≥ 3

Luke Hunsberger Recent Advances in Temporal Networks 17 / 249

Simple Temporal Network
Solutions, Consistency, Simple Temporal Problem

A solution to an STN S = (T , C) is a complete set of assignmentsto the time-points in T :
{X1 = w1, X2 = w2, . . . , Xn = wn}

that together satisfy all of the constraints in C.
An STN with at least one solution is consistent.

The problem of determining whether an STN is consistent iscalled the Simple Temporal Problem (STP).

Luke Hunsberger Recent Advances in Temporal Networks 18 / 249

Simple Temporal Network
STN for Travel Example

NYC → Rome (In Rome) Rome → NYC
X1 X2 X3 X4

T = {Z,X1,X2,X3,X4}, where Z = Noon, June 8

C =

Z − X1 ≤ −4 (Leave NYC after 4 p.m., June 8)
X4 − Z ≤ 250 (Return NYC by 10 p.m., June 18)
X4 − X1 ≤ 168 (Gone no more than 7 days)
X2 − X3 ≤−120 (In Rome at least 5 days)
X4 − X3 ≤ 7 (Return flight less than 7 hrs)

Luke Hunsberger Recent Advances in Temporal Networks 19 / 249

Simple Temporal Network
Graph for an STN [Dechter et al., 1991]

The graph for an STN, S = (T , C), is a graph, G = (T , E), where:
Time-points in S ⇐⇒ nodes in G

Constraints in C ⇐⇒ edges in E:
Y − X ≤ δ X δ Y

Luke Hunsberger Recent Advances in Temporal Networks 20 / 249

Simple Temporal Network
Graphical Representation

Constraint(s) Edge(s) Interval Notation
Y − X ≤ 7 X Y

7
X Y

(−∞, 7]

X − Y ≤ −3
(equiv: Y − X ≥ 3) X Y

−3 X Y
[3,+∞)

3 ≤ Y − X ≤ 7 X Y
7
−3 X Y

[3, 7]

4 ≤ X ≤ 9 Z X
9
−4 Z X

[4, 9]

Luke Hunsberger Recent Advances in Temporal Networks 21 / 249

Simple Temporal Network
Graph for Travel Example

Z − X1 ≤ −4, X4 − Z ≤ 250
X4 − X1 ≤ 168, X2 − X3 ≤ −120
X4 − X3 ≤ 7, X1 − X2 ≤ 0
X3 − X4 ≤ 0

Z X1 X2 X3 X4

250

−4
168

0 −120 7
0

Luke Hunsberger Recent Advances in Temporal Networks 22 / 249

Simple Temporal Network
Implicit Constraints

Explicit constraints combine (propagate) to form implicit constraints:
X − W ≤ 30

+ Y − X ≤ 40
Y − W ≤ 70 W

X

Y

30 40

70

Luke Hunsberger Recent Advances in Temporal Networks 23 / 249

Simple Temporal Network
Chains of Constraints as Paths

Chains of constraints correspond to paths in the graph.
Stronger constraints correspond to shorter paths.

Xi

•

•
•

Xj

•
•

4
−3

4 6

2
3

4

9

Luke Hunsberger Recent Advances in Temporal Networks 24 / 249

Simple Temporal Network
Distance Matrix [Dechter et al., 1991]

Definition 2 (Distance Matrix)
The Distance Matrix for an STN S is a matrix D defined by:
D(X ,Y) = Length of Shortest Path from X to Y in the graph for S

X

Y

D(X ,Y)

The strongest implicit constraint on Y − X in S is:
Y − X ≤ D(X ,Y)

Luke Hunsberger Recent Advances in Temporal Networks 25 / 249

Simple Temporal Network
Distance Matrix for Travel Example

Z X1 X2 X3 X4

250

−4
168

0 −120 7
0

D Z X1 X2 X3 X4Z 0 130 130 250 250X1 -4 0 48 168 168X2 -4 0 0 168 168X3 -124 -120 -120 0 7X4 -124 -120 -120 0 0
Gray cells correspond to explicit edges.

Luke Hunsberger Recent Advances in Temporal Networks 26 / 249

Simple Temporal Network
Fundamental Theorem of STNs [Dechter et al., 1991]

For an STN S, with graph G, and distance matrix D,the following are equivalent:
S is consistent
D has non-negative values down its main diagonal
G has no negative-length loops

Luke Hunsberger Recent Advances in Temporal Networks 27 / 249

Consistency-Checking Algorithms
for STNs

Luke Hunsberger Recent Advances in Temporal Networks 28 / 249

Sample Consistency-Checking Algorithms

Floyd-Warshall (computes D; generates solutions)
Bellman-Ford SSSP (checks consistency; generates solution)
Speed-ups to Bellman-Ford (up to 6 times faster)
Dijkstra SSSP (only for non-neg. edges, but useful...)
Johnson (uses BF and Dijkstra to compute D)
Directional and Partial Path Consistency (DPC and PPC)
Incremental algorithms

Luke Hunsberger Recent Advances in Temporal Networks 29 / 249

Floyd-Warshall Algorithm

Luke Hunsberger Recent Advances in Temporal Networks 30 / 249

Floyd-Warshall Algorithm
Computes distance matrix D in O(n3) time [Floyd, 1962; Warshall, 1962]

Xi

Xr

Xj

U V

D(X i,Xr) D(Xr ,Xj)
D(Xi ,Xj)

Initialize D(_,_) using edge-weights
for r=1 to n

for i=1 to n
for j=1 to n

D(Xi,Xj) := min{D(Xi,Xj), D(Xi,Xr) + D(Xr,Xj)}
return D

If a shortest path from U to V contains Xr as an interior point,then after the r th round, that shortest path can ignore Xr .
Luke Hunsberger Recent Advances in Temporal Networks 31 / 249

Extracting Solutions from D
[Dechter et al., 1991]

For each X ∈ T , its time window is: [−D(X ,Z),D(Z,X)]

−D(X ,Z) is a lower-bound for X because
Z − X ≤ D(Z ,X) ⇐⇒ X ≥ −D(Z ,X).

D(Z,X) is an upper-bound for X because
X − Z ≤ D(X ,Z) ⇐⇒ X ≤ D(X ,Z).

Two easy-to-find solutions:
Earliest-times solution:
X1 = −D(X1,Z), X2 = −D(X2,Z), . . . , Xn = −D(Xn,Z)
Latest-times solution:
X1 = D(Z,X1), X2 = D(Z,X2), . . . , Xn = D(Z,Xn).

Luke Hunsberger Recent Advances in Temporal Networks 32 / 249

GenSoln
Generating any and all solutions from D [Dechter et al., 1991]

Given any consistent STN graph G = (T , E) with distance matrix D:
1 U := T (currently unexecuted time-points)
2 For each X ∈ T , TW(X) = [−D(X ,Z),D(Z ,X)] (time windows)
3 Choose: Pick some X ∈ U , and some t ∈ TW(X)

4 Execute: set X := t , and remove X from U

5 Propagate: Update time windows:
For each Y ∈ U : TWY := TWY ∩ [t −D(Y ,X), t +D(X ,Y)]

Upper: Y −X ≤ D(X ,Y) =⇒ Y ≤ X +D(X ,Y) = t +D(X ,Y)Lower: X −Y ≤ D(Y ,X) =⇒ Y ≥ X −D(Y ,X) = t −D(Y ,X)

6 If U non-empty, go back to (3); else done.
Luke Hunsberger Recent Advances in Temporal Networks 33 / 249

Bellman-Ford Algorithm and Friends

Luke Hunsberger Recent Advances in Temporal Networks 34 / 249

Bellman-Ford Algorithm: Version 1
An O(mn)-time SSSP∗ algorithm [Bellman, 1958; Ford and Fulkerson, 1962]

Introduce new node S ̸∈ T to use as a source node.
Goal: Compute d(X) = distance from S to X , for each X ∈ T .
Initialization: d(X) = 0 for each X ∈ T .

S

X1 X2 X3
X4

X5

0

for i=1 to (n-1),
for each edge (U,δ,V) in graph,

d(V) := min{d(V), d(U) + δ}

for each edge (U,δ,V) in graph,
if (d(V) > d(U) + δ) return false

return true

S

U

V

d(U)

d(V)

δ

⇒ After kth iteration, will know length of every shortest path having at most k edges.
∗ SSSP = single-source, shortest-path

Luke Hunsberger Recent Advances in Temporal Networks 35 / 249

Extracting a Solution from Bellman-Ford
[Bellman, 1958; Ford and Fulkerson, 1962]

For a consistent STN S, the distance function d(X) computed byBellman-Ford (Version 1) is a solution for S.
d(V) ≤ d(U) +D(U,V) ⇐⇒ d(V)− d(U) ≤ D(U,V)

S

U

V

d(U)

d(V)

D(U,V)

Luke Hunsberger Recent Advances in Temporal Networks 36 / 249

Bellman-Ford Algorithm: Version 2
An O(mn)-time SSSP∗ algorithm [Bellman, 1958; Ford and Fulkerson, 1962]

Pick any node S ∈ T to use as the source node.
Goal: Compute d(X) = distance from S to X , for each X ∈ T .
Initialization: d(X) = ∞ for each X ∈ T \ {S}.

S

X1 X2 X3
X4

X5

∞

for i=1 to (n-1),
for each edge (U,δ,V) in graph,

d(V) := min{d(V), d(U) + δ}

for each edge (U,δ,V) in graph,
if (d(V) > d(U) + δ) return false

return true

S

U

V

d(U)

d(V)

δ

⇒ After kth iteration, will know length of every shortest path having at most k edges.
∗ SSSP = single-source, shortest-path

Luke Hunsberger Recent Advances in Temporal Networks 37 / 249

Speed-ups of Bellman-Ford
[Bannister and Eppstein, 2012; Yen, 1970]

Stop early if no changes in preceding iteration.
If no changes to d(U) in preceding iteration, no need to checkedges emanating from U in current iteration.
Given an ordering/ranking of the time-points, partition the graphinto two sub-graphs, G+ and G−, where:

◦ G+ contains edges from lower-ranked to higher-rankedtime-points, and
◦ G− contains edges from higher-ranked to lower-rankedtime-points.

During odd iterations, only propagate along edges in G+;during even iterations, propagate along edges in G−.
Random ranking can make Bellman-Ford up to six times faster.

Luke Hunsberger Recent Advances in Temporal Networks 38 / 249

Speed-ups of Bellman-Ford (cont’d.)
[Bannister and Eppstein, 2012; Yen, 1970]

Suppose source node is X0 ∈ T .
Initialization: For each X ∈ T , d(X) = ∞, except d(X0) = 0.
Suppose ranking is: {X0,X1,X2, . . . ,Xn}.
Just one iteration to compute lengths of all shortest paths in G+.
Example: X0 X2 X4 X7 X8 X9

−1 −3 2 −8 1

k + 1 iterations to compute lengths of all shortest paths having atmost k transitions between edges in G+ and edges in G−.
Example: X0 X1 X4 X3 X2 X9 X12

1 −7 −1 3 1 2

Luke Hunsberger Recent Advances in Temporal Networks 39 / 249

Dijkstra’s Algorithm

Luke Hunsberger Recent Advances in Temporal Networks 40 / 249

Dijkstra’s Algorithm
SSSP algorithm for checking consistency in O(m + n log n) time [Dijkstra, 1959]

Only works on STN graphs with non-negative edges

For given source node S ∈ T ,computes d(X) = distance from S to X , for all X .
O(m + n log n) if using Fibonacci heap for priority queue
d(X) := ∞ for all X, but d(S) := 0
Q := an empty priority queue
Insert S into Q with priority 0
while Q non-empty,

U := ExtractMinFrom(Q)
for each successor edge (U, δ,V),

d(V) := min{d(V),d(U) + δ}
return d

S

U

V

d(U)

d(V)

δ

Luke Hunsberger Recent Advances in Temporal Networks 41 / 249

Johnson’s Algorithm

Luke Hunsberger Recent Advances in Temporal Networks 42 / 249

Johnson’s Algorithm
Computes D in O(mn + n2 log n) time [Johnson, 1977]

Dijkstra’s alg. only applies to graphs with non-negative edges.
However, for any consistent STN S:

◦ Use Bellman-Ford to generate a solution f .
◦ Use f as a potential function to re-weight edges in graph tonon-negative values (next slide)
◦ Then, for each X , use Dijkstra to compute one row of D.
◦ Easy to convert between original and non-negative weights(next slide).

The result is the O(mn + n2 log n)-time Johnson’s Algorithm.

Luke Hunsberger Recent Advances in Temporal Networks 43 / 249

Potential Functions & Re-weighted Graphs
Given: f : T → R, a solution for an STN S = (T , C).

Then f (Y)− f (X) ≤ δ for each constraint (Y − X ≤ δ) ∈ C

In other words, 0 ≤ f (X) + δ − f (Y)

Let C′ = {(X , δ′,Y) | (X , δ,Y) ∈ C}, where δ′ = f (X) + δ − f (Y)

Then S ′ = (T , C′) has only non-negative edges.
Therefore, can use Dijkstra’s SSSP algorithm on S ′

⇒ Shortest paths in S correspond to shortest paths in S ′:
D′(X ,Y) = f (X) +D(X ,Y)− f (Y)

X W Y
-4 2

(f (X)+ (-4) −f (W)) + (f (W)+ 2 −f (Y)) = f (X)+ (-4 + 2) −f (Y)

Luke Hunsberger Recent Advances in Temporal Networks 44 / 249

Johnson’s Algorithm
[Johnson, 1977]

Given: an STN, S = (T , C)

Run Bellman-Ford to generate solution f : T → R for S.
Let S ′ = (T , C′) be re-weighted graph based on f :

δ′ = f (X) + δ − f (Y) ≥ 0 for each (X , δ,Y) ∈ C.
For each X ∈ T , run Dijkstra on S ′ with X as source node

— computes D′(X ,Y) for all Y ∈ T .
Reverse the re-weighting to obtain D for S:

D(X ,Y) = −f (X) +D′(X ,Y) + f (Y).
Complexity: O(mn) + n ∗ O(m + n log n) = O(mn + n2 log n)

Luke Hunsberger Recent Advances in Temporal Networks 45 / 249

Cython

Luke Hunsberger Recent Advances in Temporal Networks 46 / 249

Introduction to Cython

Luke Hunsberger Recent Advances in Temporal Networks 47 / 249

About Cython

“Cython is an optimising static compiler for both the Pythonprogramming language and the extended Cython programminglanguage (based on Pyrex)."
Cython “makes writing C extensions for Python as easy asPython itself."
“Cython gives you the combined power of Python and C."
Documentation, Tutorials, Examples available at cython.org
Cython Tutorial [Behnel et al., 2009]

All quotes from cython.org

Luke Hunsberger Recent Advances in Temporal Networks 48 / 249

Installing Cython

If you currently have Python version 3.4 or greater:
pip3 install Cython

Luke Hunsberger Recent Advances in Temporal Networks 49 / 249

Using Cython
Most source code goes into *.pyx files
Function signatures and struct defs can go into *.pxd files
Info about *.pyx files goes into a single setup.py file
To Compile: python3 setup.py build_ext --inplace

Generates *.c and *.so files enabling your modules to beimported into Python
cython -a myfile.pyx

Generates html file showing translation from Cython to C code.

Luke Hunsberger Recent Advances in Temporal Networks 50 / 249

Using Cython (cont’d.)

To speed up Cython code:
Declare data types especially for arrays and array indices
Use numpy arrays
Use csr_matrix sparse matrices
Use malloc and free to dynamically allocate and free memory

Luke Hunsberger Recent Advances in Temporal Networks 51 / 249

Getting Cython Code for this Tutorial

All code for this tutorial is available at:

https://www.cs.vassar.edu/~hunsberg/icaps_2023_tutorial_code/

or

https://www.cs.vassar.edu/~hunsberg/icaps_2023_tutorial_code.zip

Luke Hunsberger Recent Advances in Temporal Networks 52 / 249

Basic Cython Example: Version 1 (Pure Python)
Modified from [Behnel et al., 2009]

File: test1.pyx -- SOURCE CODE

from math import sin as sin

INTEGRATE_SIN
--
Estimate integral of SIN from A to B using N divisions

def integrate_sin(a, b, N):
s = 0
dx = (b-a)/N
for i in range(N):

s += sin(a+i*dx)
return s * dx

Luke Hunsberger Recent Advances in Temporal Networks 53 / 249

Basic Cython Example: Version 1 (Pure Python)
Modified from [Behnel et al., 2009]

File: test1_setup.py -- COMPILATION MANAGER

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules= [Extension("test1", ["test1.pyx"])]

for e in ext_modules:
e.cython_directives = {’language_level’: "3"}

setup(name = ’Test1’ ,
cmdclass = {’build_ext’: build_ext},
ext_modules = ext_modules)

Luke Hunsberger Recent Advances in Temporal Networks 54 / 249

Basic Cython Example: Version 1 (Pure Python)
Compilation

icaps-2023-repo$ python3 test1_setup.py build_ext --inplace
/Users/hunsberger/Desktop/icaps-2023-repo/test1_setup.py:5: ...
running build_ext
cythoning test1.pyx to test1.c
building ’test1’ extension
clang -Wno-unused-result -Wsign-compare -Wunreachable-code ...
clang -bundle -undefined dynamic_lookup -arch arm64 -arch ...

icaps-2023-repo$ ls test1.*
test1.c test1.pyx test1.cpython-310-darwin.so

Luke Hunsberger Recent Advances in Temporal Networks 55 / 249

Basic Cython Example: Version 1 (Pure Python)
Importing Module into Python

icaps-2023-repo$ python3
Python 3.10.0 (v3.10.0:b494f5935c, ...
Type "help", "copyright", "credits" ...

>>> import test1

>>> test1.integrate_sin(0, 1.57, 100)
0.9913331512178147

>>> test1.integrate_sin(0, 6.28, 1000)
1.5074917580179498e-05

Luke Hunsberger Recent Advances in Temporal Networks 56 / 249

Basic Cython Example: Version 1 (Pure Python)
html file generated by: cython -a test1.pyx

Luke Hunsberger Recent Advances in Temporal Networks 57 / 249

Basic Cython Example: Version 1 (Pure Python)
html file generated by: cython -a test1.pyx

Luke Hunsberger Recent Advances in Temporal Networks 58 / 249

Basic Cython Example: Version 2
Modified from [Behnel et al., 2009]

File: test2.pyx -- SOURCE CODE

Import SIN function from C math library
from libc.math cimport sin

INTEGRATE_SIN

Estimate integral of SIN from A to B using N divisions

def integrate_sin(double a, double b, int N):

cdef:
int i
double s, dx

s = 0
dx = (b-a)/N
for i in range(N):

s += sin(a+i*dx)
return s * dx

Luke Hunsberger Recent Advances in Temporal Networks 59 / 249

Basic Cython Example: Version 2
html file generated by: cython -a test2.pyx

Luke Hunsberger Recent Advances in Temporal Networks 60 / 249

Basic Cython Example: Version 2
html file generated by: cython -a test2.pyx

Luke Hunsberger Recent Advances in Temporal Networks 61 / 249

Cython Code for STNs

Luke Hunsberger Recent Advances in Temporal Networks 62 / 249

Representing STNs
First Attempt

An STN graph is a pair (T , E) where:
• T is a set of n time-points: X0,X1, . . . ,Xn−1
• E is a set of m edges, each of the form: Xi

δ Xj

The time-points can be represented by numerical indices:
0, 1, . . . , n − 1

The edges can be represented by a list:
((Xi1 , δ1,Xj1), (Xi2 , δ2,Xj2), . . . (Xim , δm,Xjm))

. . . but that doesn’t allow fast access.
Luke Hunsberger Recent Advances in Temporal Networks 63 / 249

Representing STNs
Second Attempt

The edges in an STN can be represented by an n-by-n array/matrix:
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

. . . but that wastes space if the graph is sparse.
For example, if: m = 10 ≪ 25 = n2.

. . . “no edge" represented by ∞.

. . . diagonal entries contain 0.
Luke Hunsberger Recent Advances in Temporal Networks 64 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.
Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.Content of wts and cols for row r starts at index indptr[r]

Luke Hunsberger Recent Advances in Temporal Networks 65 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")

Luke Hunsberger Recent Advances in Temporal Networks 66 / 249

Compressed Sparse Row (CSR) Matrices
A CSR matrix only represents the edges that are present.
For an n-by-n matrix with m entries, a CSR matrix uses threevectors that, in the literature, are called:

data: an m-vector (we use for weights)
indices: an m-vector (we use for column indices)
indptr: an (n + 1)-vector

For each row r ∈ {0,1, . . . ,n − 1},For each index i ∈ [indptr[r], indptr[r+ 1]],
There is an edge: r

data[i]
indices[i].

Can use csr_matrix from scipy.sparse, but:
Their algorithms assume that implicit entries are 0,whereas we need ∞ in off-diagonal entries.

Luke Hunsberger Recent Advances in Temporal Networks 67 / 249

Modules in STN Library
File Name Description
min_bin_heaps.pyx Minimum Binary Heaps
fib_heaps.pyx Fibonacci Heaps
bellman_ford.pyx Bellman-Ford Alg.
dist_mat.pyx Distance-matrix Algs.
lifo.pyx Last-in, first-out queues
pred_graphs.pyx Predecessor graphs
tarjan_scc.pyx Tarjan’s SCC Alg.
rigid_components.pyx Compute rigid components
rev_post_order.pyx Reverse post-order
disp_new.pyx Dispatchability Algs.

Only def functions can be imported into Python session.
But cdef functions can be imported/used by other Cython modulesif their signatures are included in the corresponding *.pxd file.
Similarly, cdef Cython structs and enums that are defined in
*.pxd files can be used by other Cython modules.

Luke Hunsberger Recent Advances in Temporal Networks 68 / 249

Example: min_bin_heaps.pyx/pxd
Implementation of Minimum Binary Heaps

min_bin_heaps.pxd file provides:
Definition for enum State

Definitions for struct Node and struct MinBinHeap

Signatures for Cython functions: init_heap, clear_heap,
free_heap, is_empty, insert_node, decrease_key, get_status,
insert_or_decrease_key, and extract_min_node.

min_bin_heaps.pyx file provides:
Definitions for all of the above (exportable) Cython functions.
Definitions of private Cython functions: swapper, init_node,
print_node, get_status and min_heapify.
Definition of a Python-importable function: test_mbh.

Luke Hunsberger Recent Advances in Temporal Networks 69 / 249

Testing the min_bin_heaps Module

The test_mbh function generates num random numbers, inserts theminto the queue, and then extracts them in order of priority.
>>> mbh.test_mbh(5)
node: tp:1, pri: 5.0 , loc:-1, state:ALREADY_POPPED
node: tp:3, pri: 6.0 , loc:-1, state:ALREADY_POPPED
node: tp:4, pri: 21.0 , loc:-1, state:ALREADY_POPPED
node: tp:0, pri: 22.0 , loc:-1, state:ALREADY_POPPED
node: tp:2, pri: 48.0 , loc:-1, state:ALREADY_POPPED
--- MBH Test Done! ---

Luke Hunsberger Recent Advances in Temporal Networks 70 / 249

Testing the dist_mat Module
Algorithms for computing the distance matrix

>>> import stn_helpers as sh # See Python file: stn_helpers.py
>>> import dist_mat as dm
>>> gr = sh.gen_rand_csr_matrix(5,12) # Generate random STN with n=5, m=12
>>> sh.show_square_csr_matrix(gr) # Display the STN edges as square matrix
______ ______ 18.00 34.00 ______

-47.00 ______ ______ -20.00 -21.00

______ 64.00 ______ 25.00 10.00

-5.00 ______ -4.00 ______ ______

______ ______ 7.00 3.00 ______

>>> (retval, disty) = dm.fw(5, gr) # Call Floyd-Warshall
>>> disty # Show the distance matrix

array([[0., 82., 18. , 31. , 28.],

[-47. , 0., -29., -20. , -21.],

[8., 64. , 0., 13. , 10.], 2 10 4 3 3
[-5. , 60., -4. , 0., 6.],

[-2., 63., -1. , 3. , 0.]]) 4 3 3 −4 2

Luke Hunsberger Recent Advances in Temporal Networks 71 / 249

Real-Time Execution
and Dispatchability for STNs

Luke Hunsberger Recent Advances in Temporal Networks 72 / 249

Motivating Dispatchability

Luke Hunsberger Recent Advances in Temporal Networks 73 / 249

Motivating Dispatchability

Concern: Solution fixed in advance has no flexibility.
Goal: Preserve flexibility by postponing execution decisions untilneeded in real time—without incurring heavy computational cost.

A dispatchable STN:
• Preserves maximum flexibility
• Supports generating solutions in real time
• Requires only local propagation during execution

Luke Hunsberger Recent Advances in Temporal Networks 74 / 249

Background: GenSoln
An Algorithm for Generating an STN Solution [Dechter et al., 1991]

Given any consistent STN graph G = (T , E):
1 U := T (currently unexecuted time-points)
2 For each X ∈ T , TW(X) = [−D(X ,Z),D(Z ,X)] (time windows)
3 Choose: Pick some X ∈ U , and some t ∈ TW(X)

4 Execute: set X := t , and remove X from U

5 Propagate: Update time windows:
For each Y ∈ U : TWY := TWY ∩ [t −D(Y ,X), t +D(X ,Y)]

Upper: Y −X ≤ D(X ,Y) =⇒ Y ≤ X +D(X ,Y) = t +D(X ,Y)Lower: X −Y ≤ D(Y ,X) =⇒ Y ≥ X −D(Y ,X) = t −D(Y ,X)

6 If U non-empty, go back to (3); else done.
Luke Hunsberger Recent Advances in Temporal Networks 75 / 249

Executing an STN in Real Time
Initial Attempt: Using GenSoln

Z

B

C

D

−5 6 3

−2

−4
30

−2

Luke Hunsberger Recent Advances in Temporal Networks 76 / 249

Executing an STN in Real Time
Initial Attempt: Using GenSoln

Compute D (equiv., compute APSP graph)

Z

B

C

D

26
−5

28

30
−9

6 3
25

−2

−4

28
−2

Time Windows: Z ∈ [0,0], B ∈ [5,26], C ∈ [2,28], D ∈ [9,30]
Luke Hunsberger Recent Advances in Temporal Networks 77 / 249

Executing an STN in Real Time
Initial Attempt: Using GenSoln

Arbitrarily choose D = 20 ∈ [9,30]; then update D:

Z

B

C

D

16
−5

18

20
−20

6 3
15

−2

−4

18
−2

Updated Time Windows: B ∈ [5,16], C ∈ [2,18]Whoops! Can’t go back in time to execute B ≤ 16 or C ≤ 18!
Luke Hunsberger Recent Advances in Temporal Networks 78 / 249

Executing an STN in Real Time
Initial attempt: Using GenSoln

GenSoln is great for finding solutions for consistent STNs—in advance.

GenSoln is not reliable for real-time exeuction.
⇒ Can’t go backward in time!

Also: Updating D after each variable assignment is expensive.
Another lesson: Shouldn’t execute a time-point like D until all ofits outgoing negative edges point at already-executed time-
points (i.e., until D is enabled).

Luke Hunsberger Recent Advances in Temporal Networks 79 / 249

Real-Time Execution (RTE) Algorithm
[Muscettola et al., 1998b]

Goal: Preserve flexibility while requiring minimal computation.
0 For each X ∈ T , TW(X) = [0,∞) (time windows)
1 t := 0 (curr. time); U := T (unexecuted); E := {Z} (enabled)
2 Choose: Remove any X ∈ E such that t is in X ’s time window;
3 Execute: set X := t , and remove X from U ;
4 Propagate: propagate X = t to X ’s immediate neighbors;
5 Update: update E to include all Y ∈ U for which no negativeedges emanating from Y have a destination in U ;
6 Wait: wait until t has advanced to some time between

min{lb(W) | W ∈ E} and min{ub(W) | W ∈ E};
7 If U non-empty, go back to (2); else done.

Luke Hunsberger Recent Advances in Temporal Networks 80 / 249

Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)

Z

B

C

D

−5 6 3

−2

−4
30

−2

Luke Hunsberger Recent Advances in Temporal Networks 81 / 249

Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)

Z

B

C

D

−5 6 3

−2

−4
30

−2

−5
30

−2

After executing Z := 0, E = {B,C} and
TW(B) = [5,∞), TW(C) = [2,∞), TW(D) = [0,30]

Luke Hunsberger Recent Advances in Temporal Networks 81 / 249

Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)

Z

B

C

D

−5 6 3

−2

−4
30

−2

−5
30

−2

After executing Z := 0, E = {B,C} and
TW(B) = [5,∞), TW(C) = [2,∞), TW(D) = [0,30]

So, according to RTE, can wait until t = 100, then choose B := 100
Luke Hunsberger Recent Advances in Temporal Networks 81 / 249

Dispatchable STN
Definition [Muscettola et al., 1998b]

An STN S is dispatchable if the RTE Algorithmnecessarily successfully executes S in real time.

Luke Hunsberger Recent Advances in Temporal Networks 82 / 249

Dispatchable STN
Definition [Muscettola et al., 1998b]

An STN S is dispatchable if the RTE Algorithmnecessarily successfully executes S in real time.

(The graph in the preceding example was not dispatchable!)

Luke Hunsberger Recent Advances in Temporal Networks 82 / 249

Equivalent Characterization of Dispatchability
[Morris, 2016]

Morris found a graphical characterization of dispatchability interms of vee-paths.
A vee-path consists of zero or more negative edges followed byzero or more non-negative edges.
Theorem: An STN is dispatchable iff for every X ,Y ∈ T , if thereis a path from X to Y in G, then there is a shortest path from X to
Y that is a vee-path.

X

A

B

C

D

E

−7
−3 1

2
4

Luke Hunsberger Recent Advances in Temporal Networks 83 / 249

Dispatchability Algorithms for STNs

The APSP graph is always dispatchable, but has O(n2) edges.
Dispatchability algorithms determine which edges from the APSPgraph are needed to ensure dispatchability.
• O(n3)-time edge-filtering algorithm [Muscettola et al., 1998b]Start with APSP graph, then remove dominated edges.
• O(mn + n2 log n)-time algorithm [Tsamardinos et al., 1998]Accumulate undominated edges without building APSP graph.

Luke Hunsberger Recent Advances in Temporal Networks 84 / 249

Filtering Algorithm for STN Dispatchability
[Muscettola et al., 1998b]

Luke Hunsberger Recent Advances in Temporal Networks 85 / 249

Dominated Edges – Part 1
Dominated Negative Edges

A negative edge AC is dominated by a negative edge ABif D(A,B) +D(B,C) = D(A,B):

A

B

C

−8 2

−6
AB and AC have the same source node: A.
During execution, it is not necessary to propagate (backward)along dominated negative edges (e.g., AC).

Luke Hunsberger Recent Advances in Temporal Networks 86 / 249

Dominated Edges – Part 2
Dominated Non-Negative Edges

A non-negative edge AC is dominated by a non-negative edge BCif D(A,B) +D(B,C) = D(A,B):

A

B

C

2 9

11
BC and AC have the same destination node: C.
During execution, it is not necessary to propagate (forward) alongdominated non-negative edges (e.g., AC).

Luke Hunsberger Recent Advances in Temporal Networks 87 / 249

Edge-Filtering Algorithm
Example

Start with Distance Matrix

Z

B

C

D

26
−5

28
−2

30
−9

63
25
−4

28
−2

Luke Hunsberger Recent Advances in Temporal Networks 88 / 249

Edge-Filtering Algorithm
Example

Remove “dominated” edges:

Z

B

C

D

26
−5

28
−2

30
−9

63
25
−4

28
−2

Luke Hunsberger Recent Advances in Temporal Networks 88 / 249

Edge-Filtering Algorithm
Example

Remove “dominated” edges:

Z

B

C

D

26
−5

28
−2

30
−9

63
25
−4

28
−2

Luke Hunsberger Recent Advances in Temporal Networks 88 / 249

Edge-Filtering Algorithm
Example

Remove “dominated” edges:

Z

B

C

D

26
−5

28
−2

30
−9

63
25
−4

28
−2

Luke Hunsberger Recent Advances in Temporal Networks 88 / 249

Edge-Filtering Algorithm
Example

Remove “dominated” edges:

Z

B

C

D

26
−5

28
−2

30
−9

63
25
−4

28
−2

Luke Hunsberger Recent Advances in Temporal Networks 88 / 249

Running the RTE Alg. on the Dispatchable STN
Initially: t = 0, X = {}, E = {Z}.

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

Remove Z from E. Set Z = 0. Add Z to X .
Luke Hunsberger Recent Advances in Temporal Networks 89 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate Z = 0 to neighbors;

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

X = {Z}, E = {B,C}; B ∈ [5, 26],C ∈ [2, 28],D ∈ [0, 30].

Luke Hunsberger Recent Advances in Temporal Networks 90 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z}, E = {B,C}; Bounds: B ∈ [5,26], C ∈ [2,28].

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

Let t advance to 12; Pick B from E; Set B = 12.
Luke Hunsberger Recent Advances in Temporal Networks 91 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate B = 12 to neighbors

Z

B

C

D

12
−12

28
−2

30
63 −4

−2

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]
Luke Hunsberger Recent Advances in Temporal Networks 92 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]

Z

B

C

D

12
−12

28
−2

30
63 −4

−2

Let t advance to 16, pick C from E, set C = 16.
Luke Hunsberger Recent Advances in Temporal Networks 93 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate C = 16 to C ’s only remaining neighbor, D.

Z

B

C

D

12
−12

16
−16

30
63 −4

−2

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]
Luke Hunsberger Recent Advances in Temporal Networks 94 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]

Z

B

C

D

12
−12

16
−16

30
63 −4

−2

Let t advance to 25, pick D from E, set D = 25.
Luke Hunsberger Recent Advances in Temporal Networks 95 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B,C,D}, t = 25, E = {}

Z

B

C

D

12
−12

16
−16

25
−25

63 −4

−2

Solution: Z = 0,B = 12,C = 16,D = 25.
Luke Hunsberger Recent Advances in Temporal Networks 96 / 249

Running the RTE Alg. on the Dispatchable STN (ctd.)
Easy to check that Z = 0,C = 20,B = 23,D = 28 can also begenerated by the RTE algorithm.

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

Luke Hunsberger Recent Advances in Temporal Networks 97 / 249

More Efficient STN Dispatchability Algorithm
[Tsamardinos et al., 1998]

Luke Hunsberger Recent Advances in Temporal Networks 98 / 249

More Efficient Dispatchability Algorithm for STNs
[Tsamardinos et al., 1998]

Given any STN graph G:
First, find and collapse any rigid components in G.
Second, for each X ∈ T , accumulate undominated edges by:

Constructing predecessor graph PX rooted at X
Exploring PX in reverse post-order— while keeping track of certain information.

Return all accumulated undominated edges.
⇒ Does not require constructing APSP (equiv., computing D)

Luke Hunsberger Recent Advances in Temporal Networks 99 / 249

Collapsing Rigid Components
X and Y are rigidly connected iff D(X ,Y) +D(Y ,X) = 0.
Example: X Y

7
−7 (i.e., Y = X + 7)

All time-points along a cycle of length 0 are rigidly connected.
Being rigidly connected is an equivalence relation.
A rigid component (RC) contains all of the time-points that arerigidly connected to one another.
Any time-point in an RC can serve as a representative for the RC.
Edges incident to time-points in an RC can be redirected to theRC’s representative time-point.
Afterward, each RC can effectively be collapsed to itsrepresentative (while preserving the offset information to othertime-points in the RC).

Luke Hunsberger Recent Advances in Temporal Networks 100 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 44

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 4449

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 4449

−7

12

14

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 4449

−7

12

14

6
10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

11

5
3 −8

1
−12

7

6

19

7 4449

−7

12

14

6

10

10

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Collapsing Rigid Components
Example

Z

AB

C

X

E

F

D

6

111 7 496

10

(C = A + 8)

(B = A + 5)

(F = D + 5)

(E = D + 12)

Luke Hunsberger Recent Advances in Temporal Networks 101 / 249

Finding Rigid Components

Given any consistent STN graph G, with solution f :
Construct predecessor graph PZ , using Z as source node.

PZ contains all edges in G lying on shortest paths from Z.
PZ can be constructed using Dijkstra, with f as a potential functionto re-weight edges to be non-negative.

Rigid components in G correspond to strongly connectedcomponents (SCCs) in PZ . (Cycles in PZ must have length 0.)
Use Tarjan’s SCC algorithm to detect SCCs in PZ .

Luke Hunsberger Recent Advances in Temporal Networks 102 / 249

Finding Rigid Components

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

Luke Hunsberger Recent Advances in Temporal Networks 103 / 249

Finding Rigid Components

Z

AB

C

X

E

F

D

6

11

5
3 −8

−12

7

6

19

44

−7

12

14

Predessor graph’s edges in blue

Luke Hunsberger Recent Advances in Temporal Networks 103 / 249

Accumulating Undominated Edges
Without Computing the Distance Matrix

For each X ∈ T :
Compute pred graph PX with X as source, generating distancefunction d(Y) = distance from X to Y for each Y ∈ T .
Explore PX in reverse post-order, along the way updating thefollowing information for each Y ∈ T :

Seen an ancestor W of Y in PX with d(W) < 0?
min{d(W) | W is anc of Y}.

When processing Y :
If d(Y) < 0 and have not seen an ancestor W of Y with d(W) < 0,then accumulate (undominated) edge (X , d(Y),Y).
If d(Y) ≥ 0 and min{d(W) | W is anc of Y} > d(Y), thenaccumulate (undominated) edge (X , d(Y),Y).
In either case, for each outgoing edge (Y , δ,V) in PX , update infofor V regarding its ancestor Y .

Luke Hunsberger Recent Advances in Temporal Networks 104 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D d(D) < minAncDist(D)

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –
B d(B) < minAncDist(B)

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –
B (Z , 26,B) – – No – – – 30 –

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –
B (Z , 26,B) – – No – – – 30 –

C d(C) < minAncDist(C)

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –
B (Z , 26,B) – – No – – – 30 –
C (Z , 28,C) – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C

Z

B

C

D

−4

−2

30
26

28

−5

−2

36
�@Z

(d(B) = 26)

(d(C) = 28)

(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
D (Z , 30,D) – No No – – 30 30 –
B (Z , 26,B) – – No – – – 30 –
C (Z , 28,C) – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 105 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C d(C) < minAncDist(C)

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞
Z hasNegAnc(Z) = No

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞
Z (B,−5,Z) – – – No – – – −5

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞
Z (B,−5,Z) – – – No – – – −5

D d(D) ≥ minAncDist(D)

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞
Z (B,−5,Z) – – – No – – – −5
D – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PB in rev. post-order: �SB,C,Z ,D

Z

B

C

D

−4

−2

30

−5

−2

36

�SB

(d(C) = 3)

(d(D) = 25)(d(Z) = −5)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No – No No ∞ – ∞ ∞
C (B, 3,C) No – – No ∞ – – ∞
Z (B,−5,Z) – – – No – – – −5
D – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 106 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B d(B) < minAncDist(B)

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞

Z hasNegAnc(Z) = No

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞
Z (C,−2,Z) – – – Yes – – – −2

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞
Z (C,−2,Z) – – – Yes – – – −2

D d(D) ≥ minAncDist(D)

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞
Z (C,−2,Z) – – – Yes – – – −2
D – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PC in rev. post-order: �@C,B,Z ,D

Z

B

C

D

−4

30

−2

−5

−2

36

��@@C

(d(B) = 6)

(d(D) = 28)(d(Z) = −2)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No – No ∞ ∞ – ∞
B (C, 6,B) No – – No ∞ – – ∞
Z (C,−2,Z) – – – Yes – – – −2
D – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 107 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C hasNegAnc(C) = No

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –
B hasNegAnc(B) = No

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –
B (D ,−4,B) Yes – – – −4 – – –

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –
B (D ,−4,B) Yes – – – −4 – – –

Z hasNegAnc(Z) = Yes

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –
B (D ,−4,B) Yes – – – −4 – – –
Z – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulating Undominated Edges
Example: Exploring predecessor graph PD in rev. post-order: �ZD ,C,B,Z

Z

B

C

D

−4

−2

30

−5

−2

36
��@@D

(d(B) = −4)

(d(C) = −2)

(d(Z) = −9)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – No No No – ∞ ∞ ∞ –
C (D ,−2,C) No No – – ∞ ∞ – –
B (D ,−4,B) Yes – – – −4 – – –
Z – – – – – – – – –

Luke Hunsberger Recent Advances in Temporal Networks 108 / 249

Accumulation of Undominated Edges
Example: Total Accumulated Edges

Z

B

C

D
30

26

28

3

−5

6

−2

−4

−2

Luke Hunsberger Recent Advances in Temporal Networks 109 / 249

Book on STNs — Coming soon!

Luke Hunsberger Recent Advances in Temporal Networks 110 / 249

Simple Temporal Networks
with Uncertainty (STNUs)

Luke Hunsberger Recent Advances in Temporal Networks 111 / 249

Simple Temporal Networks with Uncertainty
Motivation

You may control when an action starts, but not how long it lasts:— taxi ride, bus ride, baseball game, medical procedure.
Although their durations may be uncertain, they are often withinknown bounds.
Such actions can be represented by contingent links in atemporal network . . .

Luke Hunsberger Recent Advances in Temporal Networks 112 / 249

STN with Uncertainty (STNU)
Definition [Morris et al., 2001]

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressiveAn STNU is a triple,
S = (T , C,L), where:

(T , C) is an STN
L is a set of contingent links, each of the form (A, x, y ,C):

A is the activation time-point.
C is the contingent time-point.
Duration bounded: C − A ∈ [x, y] but uncontrollable

Notation: n = |T |, m = |C|, k = |L|.
Luke Hunsberger Recent Advances in Temporal Networks 113 / 249

STNU Graph
[Morris and Muscettola, 2005]

Each STNU has a graphical form where:
Nodes and "ordinary" edges as in an STN graph
Y − X ∈ [3,7] ⇐⇒ X Y

7
−3

Contingent Links ⇐⇒ Labeled Edges
(A,3,7,C) ⇐⇒ A C

c:3
C:− 7

The lower-case (LC) edge, A c:3 C, represents theuncontrollable possibility that C − A might equal 3.
The upper-case (UC) edge, A C:− 7 C, represents theuncontrollable possibility that C − A might equal 7.

Luke Hunsberger Recent Advances in Temporal Networks 114 / 249

Sample STNU Graph

X C1

A1 A2

C2

c 1:1
C 1:−

3 c 2:1
C 2:−

10

11
−7

8
−1

Contingent links: C1 − A1 ∈ [1,3] and C2 − A2 ∈ [1,10]
Agent only controls execution of A1,A2 and X .

Luke Hunsberger Recent Advances in Temporal Networks 115 / 249

STNU Notation
[Hunsberger, 2015b]

For a given STNU graph G:
LO edges: the lower-case or ordinary edges
OU edges: the ordinary or upper-case edges

Luke Hunsberger Recent Advances in Temporal Networks 116 / 249

STNU Notation
[Hunsberger, 2015b]

For a given STNU graph G:
LO edges: the lower-case or ordinary edges
OU edges: the ordinary or upper-case edges
LO graph: STNU graph comprising the LO edges
OU graph: STNU graph comprising the OU edges

Luke Hunsberger Recent Advances in Temporal Networks 116 / 249

STNU Notation
[Hunsberger, 2015b]

For a given STNU graph G:
LO edges: the lower-case or ordinary edges
OU edges: the ordinary or upper-case edges
LO graph: STNU graph comprising the LO edges
OU graph: STNU graph comprising the OU edges

Ignoring any alphabetic labels, the LO graph and OU graphs may beviewed as STNs.

Luke Hunsberger Recent Advances in Temporal Networks 116 / 249

Dynamic Controllability (DC)
[Morris et al., 2001] [Hunsberger, 2009]

An STNU is dynamically controllable (DC) if:
there exists a dynamic strategy . . .
for executing the non-contingent time-points . . .
such that all of the constraints will be satisfied . . .
no matter how the contingent durations turn out.

A dynamic strategy can react to contingent executions.

Luke Hunsberger Recent Advances in Temporal Networks 117 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B

c:2
C:− 9

5

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4—unless C executes early (e.g., at time 2).In that case, B could then execute immediately.

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4—unless C executes early (e.g., at time 2).In that case, B could then execute immediately.
• Conclusion: To ensure that C − B ≤ 5 is satisfied:As long as C unexecuted, B must wait until time 4.

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5C:− 4

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4—unless C executes early (e.g., at time 2).In that case, B could then execute immediately.
• Conclusion: To ensure that C − B ≤ 5 is satisfied:As long as C unexecuted, B must wait until time 4.
• A C:− 4 B is an example of a wait constraint.

Luke Hunsberger Recent Advances in Temporal Networks 118 / 249

STN with Uncertainty
STNU Example #2

0 = A C

B

c:2
C:− 9

−1

Luke Hunsberger Recent Advances in Temporal Networks 119 / 249

STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−1

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.

Luke Hunsberger Recent Advances in Temporal Networks 119 / 249

STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−11

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.
• Strategy cannot know in advance whether C will execute early,so B must execute before time 1.

Luke Hunsberger Recent Advances in Temporal Networks 119 / 249

STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−11

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.
• Strategy cannot know in advance whether C will execute early,so B must execute before time 1. No exceptions!

Luke Hunsberger Recent Advances in Temporal Networks 119 / 249

Computational Problems associated with STNUs

DC Checking: How to check whether an STNU is DC?
Dispatchability: How to efficiently execute an STNU in real time?

Luke Hunsberger Recent Advances in Temporal Networks 120 / 249

DC-Checking Algorithms for STNUs

Luke Hunsberger Recent Advances in Temporal Networks 121 / 249

Recent Approaches to DC-Checking for STNUs
Based on constraint-propagation/edge-generation rules
Focus on reducing away/bypassing “problem" edges
Some use potential functions (as in Johnson’s algorithm) to guideexploration of shortest paths in related STN graphs.
Authors Morris [2006] Morris [2014] Cairo et al. [2018]

Problem Edges LC edges Neg. OU edges UC edges
Prop. Along OU edges LO edges LO edges
Prop. Rules MM05∗ MM05∗ RUL−

Prop. Dir’n. Fwd Bkwd Bkwd
Pot. Func.? Yes No Yes
Complexity O(n4) O(n3) O(mn + k2n + kn log n)

∗ [Morris and Muscettola, 2005]
Luke Hunsberger Recent Advances in Temporal Networks 122 / 249

The MM05 Propagation Rules
[Morris and Muscettola, 2005]

Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x

Luke Hunsberger Recent Advances in Temporal Networks 123 / 249

The RUL− Propagation Rules
[Cairo et al., 2018]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U− P C A
v C:− y

max{v − y ,−x}
(A, x, y ,C) ∈ L

Luke Hunsberger Recent Advances in Temporal Networks 124 / 249

Morris’ O(n4)-time DC-Checking Algorithm
[Morris, 2006]

Starting from LC edges, propagate forward along OU edges,using MM05 rules, aiming to generate bypass edges.

A

C

C ′ A′ U V

c:1
15

C′:− 7 3 −18

(UC,LR) 8
(NC) 11

(NC) −7
(LC) −6

A

C

C ′ A′ C ′′ A′′

c:1
15

C′:− 7 3 C′′:− 18

(UC,LR) 8
(NC) 11

(NC) −7

(CC) C′′ :− 6
Luke Hunsberger Recent Advances in Temporal Networks 125 / 249

Morris’ O(n3)-time DC-Checking Algorithm
[Morris, 2014]

Starting from negative OU edges, propagate backward along non-negative LOedges, also using MM05 rules, aiming to generate OU bypass edges.

U A′ C′ V

W

14 c′:3 2
−15

(NC) −13(LC) −10(NC) 4

U A′ C′ C

A

14 c′:3 2
C:− 15(UC) C:− 13(CC) C:− 10(UC, LR) CX :4

Same idea applies to multiple negative edges incoming to a single node.
Luke Hunsberger Recent Advances in Temporal Networks 126 / 249

The RUL− DC-Checking Algorithm
An O(mn + k2n + kn log n)-time algorithm, [Cairo et al., 2018]

Starting from UC edges, propagate backward along LO edges, usingthe RUL− rules, aiming to generate ordinary bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R−) 4(L−) 6(R−) 3(R−) 14

(U−
nlp) −8(U −

nlp) −8(U −
nlp) −8(U −

lp) −6

Luke Hunsberger Recent Advances in Temporal Networks 127 / 249

Morris’ 2006 O(n4)-time DC-checking algorithm

Luke Hunsberger Recent Advances in Temporal Networks 128 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.

Luke Hunsberger Recent Advances in Temporal Networks 129 / 249

The MM05 Propagation Rules
[Morris and Muscettola, 2005]

Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x

Luke Hunsberger Recent Advances in Temporal Networks 130 / 249

The MM05 Propagation Rules
The No-Case (NC) Rule

Q S T3 4

7

Luke Hunsberger Recent Advances in Temporal Networks 131 / 249

The MM05 Propagation Rules
The No-Case (NC) Rule

Q S T3 4

7

Luke Hunsberger Recent Advances in Temporal Networks 131 / 249

The MM05 Propagation Rules
The Upper-Case (UC) Rule

Q C A3 C:− 10

C:− 7

Luke Hunsberger Recent Advances in Temporal Networks 132 / 249

The MM05 Propagation Rules
The Upper-Case (UC) Rule

Q C A3 C:− 10

C:− 7

The generated edge is a wait constraint:
As long as C remains unexecuted, B must wait until 7 after A.

Luke Hunsberger Recent Advances in Temporal Networks 132 / 249

The MM05 Propgation Rules
The Lower-Case (LC) Rule

A C X
c:3 -5

-2

(Applies since −5 < 0)

Luke Hunsberger Recent Advances in Temporal Networks 133 / 249

The MM05 Propgation Rules
The Lower-Case (LC) Rule

A C X
c:3 -5

-2

(Applies since −5 < 0)

Luke Hunsberger Recent Advances in Temporal Networks 133 / 249

The MM05 Propagation Rules
The Cross-Case (CC) Rule

A C AD
c:3 D :− 8

D :− 5

(Applies since −8 < 0 and C ̸≡ D)

Luke Hunsberger Recent Advances in Temporal Networks 134 / 249

The MM05 Propagation Rules
The Cross-Case (CC) Rule

A C AD
c:3 D :− 8

D :− 5

(Applies since −8 < 0 and C ̸≡ D)
Originally: C must wait until 8 after AD unless D executes early.
But: C is contingent! Therefore, to ensure that C “waits”:
Generated: A must wait until 5 after AD unless D executes early.

Luke Hunsberger Recent Advances in Temporal Networks 134 / 249

The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
C:− 1 c:3

−1

Luke Hunsberger Recent Advances in Temporal Networks 135 / 249

The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
C:− 1 c:3

−1

(Applies since −1 ≥ −3)

Luke Hunsberger Recent Advances in Temporal Networks 135 / 249

The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
c:3C:− 1

−1

X must wait at least 1 after A unless C executes early.
— But C cannot execute before time 1!

So X must wait no matter what!

Luke Hunsberger Recent Advances in Temporal Networks 135 / 249

The MM05 Propgation Rules
Important Property

All of the MM05 edge-generation rules are length preserving!

Luke Hunsberger Recent Advances in Temporal Networks 136 / 249

Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

1

3

d:3 −3
e:2

C
:− 4

Luke Hunsberger Recent Advances in Temporal Networks 137 / 249

Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

1

3

d:3 −3
e:2

C
:− 4

(LC) 0

Luke Hunsberger Recent Advances in Temporal Networks 137 / 249

Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2

Luke Hunsberger Recent Advances in Temporal Networks 137 / 249

Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2

The original path from X to Y is semi-reducible.
Luke Hunsberger Recent Advances in Temporal Networks 137 / 249

Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2
−3

With edge from Y to X , it becomesa semi-reducible negative (SRN) cycle!
Luke Hunsberger Recent Advances in Temporal Networks 137 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(UC) C2:2

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8
(NC) −7

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8
(NC) −7

(LC) −4

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.

Luke Hunsberger Recent Advances in Temporal Networks 138 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm

for i = 1 to k,

Run Bellman-Ford on OU graph to get potential function
for each contingent link (A, x, y ,C),

Do Dijkstra-like propagation using C as source,following paths in the re-weighted OU graph.
Insert all new edges from this round.

Run Bellman-Ford on OU graph to verify consistency.

Luke Hunsberger Recent Advances in Temporal Networks 139 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC) C2 :5

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

(NC) −1

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

(NC) −1
(LC) 0

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

(LC) 0

(NC) −1
(LC) 0

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0

Negative cycle in OU graph! Therefore, STNU not DC.(All edges in OU graph must be satisfied in AllMax projection.)

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0

Nesting of edge generation implies that the order in whichLC edges are processed matters!

Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0

Nesting of edge generation implies that the order in whichLC edges are processed matters!
If A2C2 is processed first, then need two rounds;If A1C1 is processed first, then need only one round.If heuristic guesses good nesting order, O(n4) → O(n3).

[Hunsberger, 2013]
Luke Hunsberger Recent Advances in Temporal Networks 140 / 249

Morris’ 2014 O(n3) DC-checking algorithm

Luke Hunsberger Recent Advances in Temporal Networks 141 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

NC Rule: Q S T3 −5

−2

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

NC Rule: Q S T3 −5

−2

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

LC Rule: A C W
c:3 −5

−2

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

LC Rule: A C W
c:3 −5

−2

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

UC Rule: W C A3 C:− 10

C:− 7

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

UC Rule: W C A3 C:− 10

C:− 7

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

CC Rule: A C AK
c:3 K:− 10

K:− 7

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
A semi-reducible negative cycle can always be reduced to acycle consisting solely of negative OU edges since precedingnon-neg. edges can be “absorbed” by neg. edges.

CC Rule: A C AK
c:3 K:− 10

K:− 7

Luke Hunsberger Recent Advances in Temporal Networks 142 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Overview

Morris’ 2014 algorithm uses the same edge-generation rules asthe 2006 algorithm, but:
starts from negative OU edges
propagates backward along non-neg. LO edges, absorbing them
looks for opportunities to bypass negative OU edges withnon-negative OU edges.

Luke Hunsberger Recent Advances in Temporal Networks 143 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Overview

Morris’ 2014 algorithm uses the same edge-generation rules asthe 2006 algorithm, but:
starts from negative OU edges
propagates backward along non-neg. LO edges, absorbing them
looks for opportunities to bypass negative OU edges withnon-negative OU edges.

Propagating backward automatically resolves the nesting issue!

Luke Hunsberger Recent Advances in Temporal Networks 143 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Overview

Morris’ 2014 algorithm uses the same edge-generation rules asthe 2006 algorithm, but:
starts from negative OU edges
propagates backward along non-neg. LO edges, absorbing them
looks for opportunities to bypass negative OU edges withnon-negative OU edges.

Propagating backward automatically resolves the nesting issue!
Since back-propagation is only done along non-negative LOedges, don’t need for a potential function!

Luke Hunsberger Recent Advances in Temporal Networks 143 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12
Starting from a negative edge . . .

Propagate backward along non-negative edges . . .
If path-length goes non-negative,generate a non-negative bypass edge.

If ever encounter another negative edge. . .
Recursively process the interrupting edge.

Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LC) −6

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0(UC) 9

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

(UC) C2:− 10

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10
C2:− 1

Starting from a negative edge . . .
Propagate backward along non-negative edges . . .

If path-length goes non-negative,generate a non-negative bypass edge.
If ever encounter another negative edge. . .

Recursively process the interrupting edge.
Luke Hunsberger Recent Advances in Temporal Networks 144 / 249

Morris’ O(n3)-time DC-Checking Algorithm
Pseudocode

for each negative node X:
if (DCbackprop(X) = false) return false

else return true

Luke Hunsberger Recent Advances in Temporal Networks 145 / 249

Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – Detect Negative Cycle or Redundant Call

DCbackprop(source)
if ancestor call with same source: return false;

if prior terminated call with source: return true;

distance(source) = 0;
for each node x other than source: distance(x) = infinity;
PriorityQueue queue = empty;
for each Edge(n,wt,source) in InEdges(source) do

distance(n) = wt;
insert n into queue;

while queue not empty:

... body of while loop ...

return true;

Luke Hunsberger Recent Advances in Temporal Networks 146 / 249

Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – Initialize Priority Queue

DCbackprop(source)
if ancestor call with same source: return false;
if prior terminated call with source: return true;

distance(source) = 0;

for each node x other than source: distance(x) = infinity;

PriorityQueue queue = empty;

for each Edge(n,wt,source) in InEdges(source) do

distance(n) = wt;

insert n into queue;

while queue not empty:

... body of while loop ...

return true;

Luke Hunsberger Recent Advances in Temporal Networks 147 / 249

Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – The Main Loop

DCbackprop(source)
... detect neg cycle or redundant call ...
... init priority queue ...

while queue not empty:
pop Node u from queue;
if distance(u) >= 0:

add Edge(u,distance(u),source) to graph; // Bypass Edge!
else:

if (u is negative node):
if (DCbackprop(u) = false): return false; // Recursive Call!

for each e = Edge(n,wt,u) in InEdges(u):
if (wt >= 0) and (e is suitable):

if distance(u) + wt < distance(v) // One-step back-prop along
distance(v) = distance(u) + wt; // non-negative edges
insert v into queue;

return true;

Luke Hunsberger Recent Advances in Temporal Networks 148 / 249

The RUL− DC-checking Algorithm

Luke Hunsberger Recent Advances in Temporal Networks 149 / 249

Recall the MM05 Propagation Rules
Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x

Luke Hunsberger Recent Advances in Temporal Networks 150 / 249

Recall the MM05 Propagation Rules
Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x

All of these rules are length preserving!
Luke Hunsberger Recent Advances in Temporal Networks 150 / 249

General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)

Luke Hunsberger Recent Advances in Temporal Networks 151 / 249

General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)

Example: V A C
C:− 8 c:3
−3

−8 < −3 (eqiuv., 8 > 3)

Given: While C unexecuted, V must wait at least 8 after A.
But C cannot execute sooner than 3 after A.
Therefore, in every situation, V must wait at least 3 after A.

Luke Hunsberger Recent Advances in Temporal Networks 151 / 249

General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)

Example: V A C
C:− 8 c:3
−3

−8 < −3 (eqiuv., 8 > 3)

Given: While C unexecuted, V must wait at least 8 after A.
But C cannot execute sooner than 3 after A.
Therefore, in every situation, V must wait at least 3 after A.

The GUR rule is not length-preserving.
Luke Hunsberger Recent Advances in Temporal Networks 151 / 249

The RUL− Propagation Rules
[Cairo et al., 2018]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U− P C A
v C:− y

max{v − y ,−x}
(A, x, y ,C) ∈ L

R− ≈ NC, L− ≈ LC, U− ≈ (UC + LR + GUR).
RUL− rules only generate ordinary edges.
RUL− rules never generate wait edges, so no need for CC rule.
Propagations always involve 1-2 contingent time-points (k < n).

Luke Hunsberger Recent Advances in Temporal Networks 152 / 249

The RUL− Propagation Rules — Take 2
[Hunsberger and Posenato, 2022]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U−
lp

P C A
v C:− y

v − y
(A, x, y ,C) ∈ L, v − y ≥ −x

U−
nlp

P C A
v C:− y

−x
(A, x, y ,C) ∈ L, v − y < −x

Only the U−
nlprule is not length preserving.

Luke Hunsberger Recent Advances in Temporal Networks 153 / 249

The RUL− DC-Checking Algorithm
An O(mn + k2n + kn log n)-time algorithm, [Cairo et al., 2018]

Starting from UC edges, propagate backward along LO edges, usingthe RUL− rules, aiming to generate ordinary bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R−) 4(L−) 6(R−) 3(R−) 14

(U−
nlp) −8(U −

nlp) −8(U −
nlp) −8(U −

lp) −6

Luke Hunsberger Recent Advances in Temporal Networks 154 / 249

The RUL− DC-Checking Algorithm
Processing a UC edge, C C:− y A

Phase 1:
(a) Back-prop from C along LO edges.
(b) Use L− and R− to generate new edges terminating at C.

AC

•••

•
•

•

•
••

(a) Back-prop from C

AC

•••

•
•

•

•
••

(b) Generate new edges terminating at C

Phase 2: For each new edge XC generated during Phase 1, apply
U−

lpor U−
nlpto XC and CA to generate ordinary bypass edge.

AC

•••

•
•

•

•
••

Luke Hunsberger Recent Advances in Temporal Networks 155 / 249

RUL− DC-Checking Algorithm
Overview (continued)

AC

•••

•
•

•

•
••

(a) Back-prop from C

AC

•••

•
•

•

•
••

(b) New edges terminating at C

AC

•••

•
•

•

•
••

(c) Generate bypass edges
Backward propagation along LO edges in Phase 1 guided byDijkstra, using a potential function to re-weight the LO graph.
After inserting new bypasses edges in Phase 2, incrementallyupdate the potential function.
If Phase 1 back-prop from C encounters another UC edge C ′A′

that has not yet been processed, then interrupt Phase 1back-prop from C, and instead process C ′A′.
Re-start Phase 1 back-prop from C only after all interrupting UCedges have been processed.
Push-down stacks used to ensure that each UC edge processedat most twice; and to detect negative cycles of interruptions.

Luke Hunsberger Recent Advances in Temporal Networks 156 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

Process UC edge, C2 C2:− 10 A2.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 12 ≥ 2 = y − x and 8 ≥ 2 = y − x.
Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp) 5

(L−) 0

(U −
lp) 9

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 12 ≥ 2 = y − x and 8 ≥ 2 = y − x.Phase 2: Generate bypass edges using U−.
Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp) 5

(L−) 0

(U −
lp) 9

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp) 5

(L−) 0

(U −
lp) 9

(R−) 9

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp) 5

(L−) 0

(U −
lp) 9

(R−) 9

(U −
lp) −1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

lp.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp) 5

(L−) 0

(U −
lp) 9

(R−) 9

(U −
lp) −1

−1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

lp.Negative cycle detected when incrementally updating potentialfunction on LO edges.
Luke Hunsberger Recent Advances in Temporal Networks 157 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

Process UC edge, C2 C2:− 10 A2.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 11 ≥ 2 = y − x and 8 ≥ 2 = y − x.
Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 11 ≥ 2 = y − x and 8 ≥ 2 = y − x.Phase 2: Generate bypass edges using U−.
Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Other Phase 1 edges not shown.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8
(U −

nlp) −1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

nlpOther such edges not shown.

Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1:1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8
(U −

nlp) −1 −1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

nlpOther such edges not shown.Negative cycle in LO graph (found when trying to update potentialfunction over LO edges).
Luke Hunsberger Recent Advances in Temporal Networks 158 / 249

RUL− DC-checking Algorithm
Summary

Complexity: O(mn + k2n + kn log n) time
Faster than Morris’ 2014 O(n3) algorithm on sparse graphs(e.g., in cases where Morris’ algorithm generates O(n2) edges).

Luke Hunsberger Recent Advances in Temporal Networks 159 / 249

The RUL2021 Algorithm

Luke Hunsberger Recent Advances in Temporal Networks 160 / 249

The RUL2021 DC-Checking Algorithm
[Hunsberger and Posenato, 2022]

Combines techniques from prior algorithms with novel ideas.Like RUL−:
Back-propagates from upper-case edgesUses potential function to enable DijkstraUses the length-preserving rules from RUL−

Unlike RUL−:
Does not use non-length-preserving U−

nlpruleInserts dramatically fewer edgesUses some forward propagation (like Morris06), but only to detectcertain (rarely encountered) negative cyclesImplemented recursively (like Morris14)Deals more efficiently with interruptions
Same worst-case O(mn + k2n + kn log n) time as RUL−

— but an order of magnitude faster in practice!

Luke Hunsberger Recent Advances in Temporal Networks 161 / 249

RUL2021 Algorithm: O(mn + k2n + kn log n) time
Propagate backward from upper-case edges, using RUL− rules(but not U−

nlp), aiming to generate bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R) 4(L) 6(R) 3(R) 14

(U−
nlp) −8(U −

nlp) −8(U −
nlp) −8(U −

lp) −6

Computes—but does not insert!—dotted edges
Does not compute or insert gray dashed edges
Only inserts blue bypass edges.

Luke Hunsberger Recent Advances in Temporal Networks 162 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

Process UC edge, C2 C2:− 10 A2.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(L−) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 11 ≥ 2 = y − x and 8 ≥ 2 = y − x.
Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 11 ≥ 2 = y − x and 8 ≥ 2 = y − x.Phase 2: Generate bypass edges using U−.
Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8 (R−) 1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8 (R−) 1

(R−) 2

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8 (R−) 1

(R−) 2

(R−) 7

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8 (R−) 1

(R−) 2

(R−) 7(R−) 7

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Found C2 to C2 cycle of length 7 < ∆2 = 10 − 1 = 9!Must propagate forward!

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

(R−) 7

5

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edges

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

(R−) 7

5

6

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edges

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

(R−) 7

5

6
−1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edges

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

(R−) 7

5

6
−1

(LC) 0

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edgesFound negative length path from C2 to X !— Indicates negative cycle in OU graph!

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1
C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3
c1 :1

−7

11

(U −
lp) 5

(L−) 0

(U −
lp) 8

(R−) 8

(R−) 7

−1

(LC) 0

C2:− 2

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edgesFound negative length path from C2 to X !— Indicates negative cycle in OU graph!

Luke Hunsberger Recent Advances in Temporal Networks 163 / 249

Empirical Evaluation
Execution Time vs. Number of Nodes, n

Luke Hunsberger Recent Advances in Temporal Networks 164 / 249

Empirical Evaluation
Number of Added Edges (as multiple of m) vs. Number of Nodes, n

Luke Hunsberger Recent Advances in Temporal Networks 165 / 249

Related Work

Magic Loops: Worst-case indivisible semi-reducible negativecycles with applications to DC-Checking for STNUs
[Hunsberger, 2013, 2014a,b, 2015a]

Using Timed Game Automata (TGAs) to synthesize executionstrategies for STNUs
[Cimatti et al., 2014b]

Semantics for STNUs and real-time execution decisions
[Hunsberger, 2009]

Luke Hunsberger Recent Advances in Temporal Networks 166 / 249

Dispatchability for STNUs

Luke Hunsberger Recent Advances in Temporal Networks 167 / 249

Motivating Dispatchability for STNUs

Luke Hunsberger Recent Advances in Temporal Networks 168 / 249

Recall RTE Algorithm for STNs
[Muscettola et al., 1998b]

Goal: Preserve flexibility while requiring minimal computation.
0 For each X ∈ T , TW(X) = [0,∞) (time windows)
1 t := 0 (curr. time); U := T (unexecuted); E := {Z} (enabled)
2 Choose: Remove any X ∈ E such that t is in X ’s time window;
3 Execute: set X := t , and remove X from U ;
4 Propagate: propagate X = t to X ’s immediate neighbors;
5 Update: update E to include all Y ∈ U for which no negativeedges emanating from Y have a destination in U ;
6 Wait: wait until t has advanced to some time between

min{lb(W) | W ∈ E} and min{ub(W) | W ∈ E};
7 If U non-empty, go back to (2); else done.

Luke Hunsberger Recent Advances in Temporal Networks 169 / 249

RTE Algorithm for STNUs
Must incorporate WAIT constraints

• Initialize data (e.g., time windows, enabled TPs, etc.)
• While some TPs not yet executed:

⋆ Generate real-time execution decision (RTED)
⋆ Observe outcome: some TP executed
⋆ Update data

RTED: Hunsberger [2009]

Luke Hunsberger Recent Advances in Temporal Networks 170 / 249

RTE Algorithm for STNUs
Initialize Data

Given STNU graph: ((Tx ∪ Tc), Eo, Elc, Euc, Eucg):
• For each X ∈ Tx :

⋆ TW(X) = [lb(X), ub(X)] = (− inf, inf) (Time Windows)
⋆ ActWaits(X) = ∅ (Activated Waits)

• Ux = Tx (Unexecuted Executable TPs)
• Uc = Tc (Unexecuted Contingent TPs)
• EnabledTPs = {Z} (Enabled Executable TPs)
• now = 0 (Current time)

Luke Hunsberger Recent Advances in Temporal Networks 171 / 249

RTE Algorithm for STNUs
Activated Wait Constraints

• Suppose there is a UC edge: X C:− 9 A.
• This represents a wait constraint:

While C unexecuted, X must wait at least 9 after A.
• If A not yet executed, then X cannot be enabled.
• If A executed (say, A = 5), then the wait is activated:

While C unexecuted, X must wait until time 14.
ActWaits(X) = {(14,C)} (Activated Wait)

• If C executes before time 14, the wait disappears:
ActWaits(X) = ∅
Perhaps X can now be enabled . . .

• Multiple activated waits:
ActWaits(X) = {(14,C), (18,C2), (21,C5)}

Luke Hunsberger Recent Advances in Temporal Networks 172 / 249

RTE Algorithm for STNUs
Enabled Time-Points

An executable time-point X is not enabled for execution if:
• There is a negative edge from X to some unexecuted TP Y ; or
• X has one or more unactivated waits; or
• X has one or more activated waits.

Luke Hunsberger Recent Advances in Temporal Networks 173 / 249

RTE Algorithm for STNUs
Compute Next Real-Time Execution Decision, RTED [Hunsberger, 2009]

• If EnabledTPs = ∅ then RTED = Wait

• For each X ∈ EnabledTPs:
• lbw(X) = max{w | ∃(w ,C) ∈ ActWaits(X)} (Max wait for X)
• glb(X) = max{lb(X), lbw(X)} (Overall lower bound for X)

• tL = min{glb(X) | X ∈ EnabledTPs} (Soonest next execution)
• t∗L = max{now, tL} (After now!)
• tU = min{ub(X) | X ∈ EnabledTPs} (Latest next execution)
• possWin = [t∗L , tU] (Range for next execution)
• t = pick any time from possWin

• X = any TP from EnabledTPs for which t ∈ [glb(X), ub(X)]

• RTED = (t ,X) (“If nothing happens before time t , set X = t”)
Luke Hunsberger Recent Advances in Temporal Networks 174 / 249

RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 1: A contingent TP C executed at some ρ <= t .
⋆ Delete all waits labeled by C from relevant ActWaits sets
⋆ Update time-windows for neighboring TPs (as for STNs)
⋆ Update EnabledTPs (because of any deleted waits or incomingnegative edges to C)
⋆ now = ρ

Luke Hunsberger Recent Advances in Temporal Networks 175 / 249

RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 2: Nothing happened before time t .
⋆ Execute X at time t
⋆ Update time-windows for neighboring TPs (as for STNs)
⋆ If X is an activation TP:

Then for each UC edge Y C:− w X
insert (t + w ,C) into ActWaits(Y).

⋆ Update EnabledTPs (due to any incoming neg edges to X)
⋆ now = t

Luke Hunsberger Recent Advances in Temporal Networks 175 / 249

RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 3: A contingent time-point Cand an executable time-point X both execute at time t .
⋆ Combine updates from Cases 2 and 3.

Luke Hunsberger Recent Advances in Temporal Networks 175 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A
−6

−7
C:

−
10

c:1C:− 11

C:− 10

1
1

−2

3

Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A
−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Initialization:
• Ux = {Z ,A,X ,Y}, EnabledTPs = {Z}, now = 0.

Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Compute RTED
• Ux = {Z ,A,X ,Y}, EnabledTPs = {Z}, now = 0.
• possWin = [0, inf)
• RTED = (0,Z)

Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Observe outcome
• Nothing happens before time 0
• So execute Z at time 0

Executions: Z = 0
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Update info
• Update EnabledTPs: EnabledTPs = {A}

Executions: Z = 0
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Compute RTED
• Ux = {A,X ,Y}, EnabledTPs = {A}, now = 0.
• TW(A) = [6, inf), possWin = [6, inf), RTED = (9,A)

Executions: Z = 0
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Observe outcome
• Nothing happens before time 9
• So execute A at time 9

Executions: Z = 0 , A = 9
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Update info
• Update time-windows: —
• ActWaits(X) = {(20,C)}, ActWaits(Y) = {(19,C)}

• Ux = {X ,Y}, EnabledTPs = ∅, now = 9.

Executions: Z = 0 , A = 9
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Compute RTED
• Ux = {X ,Y}, EnabledTPs = ∅, now = 9.
• Since EnabledTPs = ∅, RTED = Wait

Executions: Z = 0 , A = 9
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Observe outcome
• Observe C executing at time 15.

Executions: Z = 0 , A = 9 , C = 15
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Update info
• Update time-windows: TW(Y) = (− inf, 16], TW(X) = (− inf, 18]
• Delete waits: ActWaits(X) = ∅, ActWaits(Y) = ∅

• Ux = {X ,Y}, EnabledTPs = {Y}, now = 15

Executions: Z = 0 , A = 9 , C = 15
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Compute RTED
• EnabledTPs = {Y}, TW(Y) = (− inf,16], now = 15
• possWin = [15,16], RTED = (16,Y)

Executions: Z = 0 , A = 9 , C = 15
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Observe outcome
• EnabledTPs = {Y}, TW(Y) = (− inf,16], now = 15
• possWin = [15,16], RTED = (16,Y)

• Execute Y at time 16

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Update info
• EnabledTPs = {X}, TW(X) = [16,18], now = 16

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 5: Compute RTED
• RTED = (17,X)

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 5: Observe outcome
• Execute X at 17

Executions: Z = 0 , A = 9 , C = 15 , Y = 16 , X = 17
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249

Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
A projection of an STNU is the STN that results from fixing all ofits contingent links to allowable values.

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
A projection of an STNU is the STN that results from fixing all ofits contingent links to allowable values.
If there are k contingent links, then there is a k-dimensionalspace of all the projections.

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The sample STNU:

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The projection of that STNU where C − A = 6:

X C Z

Y A

−6

−7

−6
6−6

−6

1
1

−2

3

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The projection of that STNU where C − A = 10:

X C Z

Y A

−6

−7

−10
10−10

−10

1
1

−2

3

Luke Hunsberger Recent Advances in Temporal Networks 177 / 249

STNU Projection
One more example

Luke Hunsberger Recent Advances in Temporal Networks 178 / 249

Real-Time Execution of Dispatchable STNUs
STNU dispatchable iff every projection is

• We don’t know in advance which projection will occur.
• However, for any projection, running the STNU version of theRTE algorithm (without knowing what the projection is) isequivalent to running the STN version of the RTE algorithm onthat projection, where the durations of the contingent time-pointsare chosen to match that projection.

Luke Hunsberger Recent Advances in Temporal Networks 179 / 249

Converting STNUs into Dispatchable Form

• Recall that not all consistent STNs are dispatchable.
• But consistent STNs that are vee-path complete (VPC) aredispatchable.
• Similarly, not all DC STNUs are dispatchable.
• But there are two recent algorithms for transforming DC STNUsinto equivalent dispatchable forms.

Luke Hunsberger Recent Advances in Temporal Networks 180 / 249

Morris’ 2014 Algorithm for STNU Dispatchability

Luke Hunsberger Recent Advances in Temporal Networks 181 / 249

Morris’ 2014 Algorithm
Easy to modify to generate dispatchable STNU

• Morris’ 2014 DC-checking algorithm does not typically generatea dispatchable STNU.
• In particular, as it back-propagates from negative edges, it onlyinserts non-negative bypass edges.
• Simply modifying it to insert the negative edges it traverses alongthe way ensures that the output STNU will be dispatchable.

Luke Hunsberger Recent Advances in Temporal Networks 182 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12
Generates bypass edges for all non-vee-paths it traverses.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LC) −6

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0(UC) 9

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

(UC) C2:− 10

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10
C2:− 1

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249

Faster STNU Dispatchability Alg.
[Hunsberger and Posenato, 2023]

Luke Hunsberger Recent Advances in Temporal Networks 184 / 249

A New Dispatchability Alg. for STNUs: FDSTNU
[Hunsberger and Posenato, 2023]

The FDSTNU algorithm has three phases:
1 Run the RUL2021 DC-checking algorithm, propagating backwardfrom UC edges aiming to bypass UC edges with ordinary edgesand waits.
2 Propagate forward from each LC edge, but only propagatingalong LO edges, aiming to bypass LC edges with ordinary edges.
3 Run the STN dispatchability algorithm on the ordinary subgraphto make that ordinary subgraph dispatchable as an STN.

Luke Hunsberger Recent Advances in Temporal Networks 185 / 249

Comparing RUL− and FDSTNU

Luke Hunsberger Recent Advances in Temporal Networks 186 / 249

The FDSTNU Algorithm
Phase One: Propagate Backward from UC Edges – RUL2021

Luke Hunsberger Recent Advances in Temporal Networks 187 / 249

The FDSTNU Algorithm
Phase Two: Propagate Forward from LC Edges – but only along LO edges

Luke Hunsberger Recent Advances in Temporal Networks 188 / 249

Empirical Comparison
FDSTNU vs. Morris14 vs. RUL2021 (only DC)

Luke Hunsberger Recent Advances in Temporal Networks 189 / 249

Related Work

Managing execution of DC STNUs
[Hunsberger, 2010, 2015b]

Using Timed Game Automata (TGAs) to synthesize executionstrategies for STNUs
[Cimatti et al., 2014b]

Luke Hunsberger Recent Advances in Temporal Networks 190 / 249

Conditional Simple TemporalNetworks (CSTNs)

Luke Hunsberger Recent Advances in Temporal Networks 191 / 249

Conditional STNs
Motivation

Many actions generate information (e.g., medical tests, opening abox, monitoring traffic).
The generated information is generally not known in advance, butdiscovered in real time.
Some actions only make sense in certain scenarios (e.g., don’tgive drug if test result is negative).
An execution strategy could be more flexible if it could reactdynamically to generated information.

Luke Hunsberger Recent Advances in Temporal Networks 192 / 249

Conditional STNs
Motivation (ctd.)

Many businesses using workflow management systems toautomate manufacturing processes.
Hospitals can use workflows to represent possible treatmentpathways for a patient.
CSTNs can serve as the temporal foundation for workflowmanagement systems.

Luke Hunsberger Recent Advances in Temporal Networks 193 / 249

Conditional STNs (CSTNs)∗

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressive

Time-points and constraints as in STNs
Observation time-points generate truthvalues for propositional letters
Time-points and constraints labeled byconjunctions of propositional letters

∗ [Tsamardinos et al., 2003]

Luke Hunsberger Recent Advances in Temporal Networks 194 / 249

Conditional STNs
Propositional Labels

Propositional letters: p,q, r , s, t , . . .

Each p has corresponding observation time-point, P?.Executing P? generates truth value for p

Label: conjunction of literals (e.g., p(¬q)r)
A scenario specifies values for all letters(e.g., p = true, q = false, r = true).
The real scenario is only revealed incrementally.
Time-points and constraints∗ can be labeled;they only apply in scenarios where their labels are true.

∗ [Hunsberger et al., 2015]

Luke Hunsberger Recent Advances in Temporal Networks 195 / 249

Conditional STNs
Sample CSTN

Z P?

Q?p Epq

Y
[1, 2]

[15,
20],

p

[1, 5], pq

[5, 30], p¬q

[5, 30], pq

[1, 5],¬p

[2, 30]

P? and Q? represent tests for a patient.
Q? is a child of P?: only executed in scenarios where p = true.

Luke Hunsberger Recent Advances in Temporal Networks 196 / 249

Conditional STNs
Dynamic Consistency

Dynamic Execution Strategy: execution decisions can react toobservations.
A CSTN is dynamically consistent (DC) if there exists a dynamicexecution strategy that guarantees that all relevant constraintswill be satisfied no matter which scenario is incrementallyrevealed over time.

Luke Hunsberger Recent Advances in Temporal Networks 197 / 249

Conditional STNs
Approaches to DC Checking

Convert to Disjunctive Temporal Problem
[Tsamardinos et al., 2003]

Convert to controller-synth. problem for Timed Game Automaton
[Cimatti et al., 2014a]

Convert to Hyper Temporal Network consistency problem
[Comin and Rizzi, 2015]

Propagate labeled constraints
[Hunsberger and Posenato, 2018b, 2020; Hunsberger et al., 2015]

Luke Hunsberger Recent Advances in Temporal Networks 198 / 249

Conditional STNs
DC Checking via Propagation

Propagate labeled constraints
— Motivated by related work on STNs with choice [Conrad and Williams, 2011]
Introduce new kind of literals and labels:
Q-literals (e.g., p?) and Q-labels (e.g., p¬q(r?)s)
Analysis of negative q-loops and negative q-stars

Luke Hunsberger Recent Advances in Temporal Networks 199 / 249

Conditional STNs
Labeled Constraints

X Y
⟨δ, α⟩

Y − X ≤ δ must hold in every scenario where α is true.
(If α = ⊡, then Y − X ≤ δ must hold in all scenarios.)

Luke Hunsberger Recent Advances in Temporal Networks 200 / 249

Conditional STNs
Labeled Constraints

X Y
⟨10,p(¬q)⟩

Y − X ≤ 10 must hold in every scenario where p(¬q) is true.

Luke Hunsberger Recent Advances in Temporal Networks 200 / 249

Conditional STNs
Propagation Rules for CSTNs

Labeled Propagation: LP and qLP
Label Modification: R0 and qR0
Label “Spreading”: R∗3 and qR∗3

(The “q” rules propagate q-labeled constraints.)

Luke Hunsberger Recent Advances in Temporal Networks 201 / 249

Conditional STNs
The LP Rule

W X Y
⟨3, pq⟩ ⟨5, q¬r⟩

Labels of two pre-existing edges are conjoined;The resulting label must be consistent.

Luke Hunsberger Recent Advances in Temporal Networks 202 / 249

Conditional STNs
The LP Rule

W X Y
⟨3, pq⟩ ⟨5, q¬r⟩

⟨8, pq¬r⟩

Labels of two pre-existing edges are conjoined;The resulting label must be consistent.

Luke Hunsberger Recent Advances in Temporal Networks 202 / 249

Conditional STNs
The R0 Rule

P? X
⟨−5, pq¬r⟩

Edge weight must be negative;Any occurrence of p (or ¬p) removed from label.

Luke Hunsberger Recent Advances in Temporal Networks 203 / 249

Conditional STNs
The R0 Rule

P? X
⟨−5, pq¬r⟩

⟨−5, q¬r⟩

Edge weight must be negative;Any occurrence of p (or ¬p) removed from label.

Luke Hunsberger Recent Advances in Temporal Networks 203 / 249

Conditional STNs
The R∗3 Rule

P? X Y
⟨−3, qr⟩ ⟨−8, pqs⟩

Pre-existing labels must be consistent;
Generated label is conjunction of pre-existing labels— minus any occurrence of p (or ¬p);
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.

Luke Hunsberger Recent Advances in Temporal Networks 204 / 249

Conditional STNs
The R∗3 Rule

P? X Y
⟨−3, qr⟩ ⟨−8, pqs⟩

⟨−3, qrs⟩

Pre-existing labels must be consistent;
Generated label is conjunction of pre-existing labels— minus any occurrence of p (or ¬p);
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.

Luke Hunsberger Recent Advances in Temporal Networks 204 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−3, q⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−3, q⟩
⟨−2, pq⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−2
,⊡

⟩

⟨−3, q⟩
⟨−2, pq⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩

⟨−2, pq⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩
⟨−2,⊡⟩

⟨−2, pq⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2, pq⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2, pq⟩⟨−2, pq⟩

⟨−2,⊡⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2,⊡⟩

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2,⊡⟩

⟨−1,¬p¬q⟩

⟨−2,⊡⟩

There is a scenario, ¬p¬q, in which there exists a negative loop!Therefore, the CSTN is not DC!

Luke Hunsberger Recent Advances in Temporal Networks 205 / 249

Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Example 3 (Non-DC instance, but LP, R0 and R∗3 not enough)

ZX1

X2 Q?

P?

R?0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩
⟨−

4,¬p¬
q⟩

Luke Hunsberger Recent Advances in Temporal Networks 206 / 249

Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Example 3 (Non-DC instance, but LP, R0 and R∗3 not enough)

ZX1

X2 Q?

P?

R?0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩
⟨−

4,¬p¬
q⟩

⟨−2, pq⟩, ⟨−2, pr⟩, ⟨−2, q¬r⟩

Luke Hunsberger Recent Advances in Temporal Networks 206 / 249

Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Q-labels: contain literals such as p?.
A constraint labeled by p? must hold as long as p’s value isunknown (i.e., as long as P? remains unexecuted).
Conjunction operation generalized to cover q-labels:

p ∧ ¬p ≡ p?; p ∧ p? ≡ p?; ¬p ∧ p? ≡ p?; etc.
Q-labels only needed on lower-bound constraints∗(i.e., edges pointing at Z).

∗ [Hunsberger and Posenato, 2018b]

Luke Hunsberger Recent Advances in Temporal Networks 207 / 249

Conditional STNs
The qR0 Rule

P? Z
⟨−5, (p?)q¬r⟩

Edge must terminate at Z;
Edge weight must be negative;
Any occurrence of p (or ¬p or p?) removed from label.

Luke Hunsberger Recent Advances in Temporal Networks 208 / 249

Conditional STNs
The qR0 Rule

P? Z
⟨−5, (p?)q¬r⟩

⟨−5, q¬r⟩

Edge must terminate at Z;
Edge weight must be negative;
Any occurrence of p (or ¬p or p?) removed from label.

Luke Hunsberger Recent Advances in Temporal Networks 208 / 249

Conditional STNs
The qR∗3 Rule

P? Z Y
⟨−3, q(r?)⟩ ⟨−8, p¬qr(s?)⟩

Labels need not be consistent;
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.

Luke Hunsberger Recent Advances in Temporal Networks 209 / 249

Conditional STNs
The qR∗3 Rule

P? Z Y
⟨−3, q(r?)⟩ ⟨−8, p¬qr(s?)⟩

⟨−3, (q?)(r?)(s?)⟩

Labels need not be consistent;
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.

Luke Hunsberger Recent Advances in Temporal Networks 209 / 249

Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩

⟨−4,¬p¬q⟩

Luke Hunsberger Recent Advances in Temporal Networks 210 / 249

Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,⊡

⟩

⟨−2,⊡⟩,
⟨−3, q?⟩,

⟨−4,¬p¬q⟩

⟨−2,⊡⟩, ⟨−3, q?⟩, ⟨−3, q¬r⟩⟨−2,⊡⟩

Incidentally, the blue edges form a “negative q-star”.

Luke Hunsberger Recent Advances in Temporal Networks 210 / 249

Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,⊡

⟩

⟨−2,⊡⟩,
⟨−3, q?⟩,

⟨−4,¬p¬q⟩

⟨−2,⊡⟩, ⟨−3, q?⟩, ⟨−3, q¬r⟩⟨−2,⊡⟩

⟨−1,¬p¬q⟩

Luke Hunsberger Recent Advances in Temporal Networks 210 / 249

Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩⟨−2,¬pq⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩
⟨0,⊡⟩

⟨0,⊡⟩

Luke Hunsberger Recent Advances in Temporal Networks 211 / 249

Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩, ⟨−2,¬pq⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩

⟨−7,⊡⟩ ⟨0,⊡⟩

⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨0,⊡⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

Luke Hunsberger Recent Advances in Temporal Networks 211 / 249

Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩, ⟨−2,¬pq⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩

⟨−7,⊡⟩ ⟨0,⊡⟩

⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨0,⊡⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

The Spreading LemmaThe minimum lower-bound constraint ⟨−7,⊡⟩has spread to all unexecuted time-points. [Hunsberger et al., 2015]
Luke Hunsberger Recent Advances in Temporal Networks 211 / 249

Conditional STNs
DC-Checking Algorithm for CSTNs

The DC-Checking Algorithm exhaustively propagates constraintsusing LP, qLP , and qR∗3.
Returns NO if any negative self-loop with a consistent label isever found; otherwise returns YES.
In positive cases, constructs earliest-first strategy, which isviable due to the Spreading Lemma.
Although exponential-time in the worst case, shown to bepractical across a variety of sample networks.

[Hunsberger and Posenato, 2018b; Hunsberger et al., 2015]

Luke Hunsberger Recent Advances in Temporal Networks 212 / 249

Conditional STNs
The Earliest-First Strategy

Keep track of current partial scenario (CPS), π.Initially π = ⊡.
After each execution event, compute effective lower bound (ELB)for each as-yet-unexecuted time-point.
ELB(X , π) restricts attention to lower bounds for X whose labelsare applicable to π.
Next time-point to execute is the one with the min. ELB value.

Luke Hunsberger Recent Advances in Temporal Networks 213 / 249

Conditional STNs
Sample Execution

π = ⊡, Z = 0, ELB(P?,⊡) = −7; execute P? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

Luke Hunsberger Recent Advances in Temporal Networks 214 / 249

Conditional STNs
Sample Execution

Suppose p = true. π = p; ELB(X ,p) = 7 = ELB(R?,p).So execute X = 7 and R? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩,⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

⟨−1,¬pq⟩

⟨−1,¬p¬q⟩

Luke Hunsberger Recent Advances in Temporal Networks 214 / 249

Conditional STNs
Sample Execution

Suppose r = true. π = pr ; ELB(Q?,p) = 8.So execute Q? = 8.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩,⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

⟨−1,¬pq⟩

⟨−1,¬p¬q⟩

Luke Hunsberger Recent Advances in Temporal Networks 214 / 249

Conditional STNs
Alternative Execution

Suppose p = false. π = ¬p; ELB(Q?,¬p) = 7So execute Q? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩, ⟨−

9,¬p(q
?)⟩,⟨−

∞, p?
⟩

⟨−
1, p

r⟩

⟨8, pr⟩

Luke Hunsberger Recent Advances in Temporal Networks 215 / 249

Conditional STNs
Alternative Execution

Suppose q = true. π = ¬pq; ELB(X ,¬pq) = 7.So execute X = 7. Afterward, execute R? = 8.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,⟨−

∞, p?
⟩

⟨−
1, p

r⟩

⟨8, pr⟩

⟨−1,¬p¬q⟩

Luke Hunsberger Recent Advances in Temporal Networks 215 / 249

Conditional STNs
Related Work

ϵ-dynamic consistency requires bounded reaction time ϵ > 0
[Comin and Rizzi, 2015].
Propagation-based ϵ-DC checking algorithm
[Hunsberger and Posenato, 2016].
Semantics of instantaneous reactivity for CSTNs
[Cairo et al., 2016].
Streamlined CSTNs
[Cairo et al., 2017].

Luke Hunsberger Recent Advances in Temporal Networks 216 / 249

Conditional STNs
CSTN Summary

Theory of dynamic consistency for CSTNs very solid:
instantaneous vs. non-instantaneous reactivity
bounded reaction time.

Several proposed DC-checking algorithms: all exponential
—but propagation-based algorithm shows promise.

More work to do on flexible execution.

Luke Hunsberger Recent Advances in Temporal Networks 217 / 249

Conditional STNs with Uncertainty
CSTNUs

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressive

A Conditional Simple Temporal Network with Uncertainty(CSTNU) combines contingent links from STNUs and observationtime-points from CSTNs.

Luke Hunsberger Recent Advances in Temporal Networks 218 / 249

Conditional STNs with Uncertainty
Sample CSTNU

Z⊡ P ′
⊡ P?⊡

Q′
p Q?p E ′

pq Epq

Y⊡

[1, 2] [5, 10]
[15

,20
],

p

[5, 10] [1, 5], pq [5, 25]

[5, 30], p¬q

[0
,5

],pq

[1, 5],¬p

[2, 30]

Contingent links (P ′, [5,10],P?) and (Q′, [5,10],Q?) representtests for a patient.
Contingent link (E ′, [5, 25],E) represents the emergency therapy.
Contingent links have no propositional labels,but the labels on their endpoints must be the same.

Luke Hunsberger Recent Advances in Temporal Networks 219 / 249

Conditional STNs with Uncertainty (CSTNUs)
Dynamic Controllability

Dynamic Execution Strategy: execution decisions may react toobservations and contingent durations.
A CSTNU is dynamically controllable if there exists a dynamicexecution strategy that guarantees that all relevant constraintswill be satisfied no matter which scenario is incrementallyrevealed over time, and no matter how the contingent durationsturn out.

Luke Hunsberger Recent Advances in Temporal Networks 220 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC-Checking for CSTNUs

Convert to Timed Game Automaton
[Cimatti et al., 2014a]
Propagate labeled constraints
[Hunsberger and Posenato, 2018a]

Luke Hunsberger Recent Advances in Temporal Networks 221 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Propagate labeled constraints as done for CSTN
Propagate also upper-case and lower-case (contingent) edgesas done for STNU considering labeled constraints

Luke Hunsberger Recent Advances in Temporal Networks 222 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Propagate labeled constraints as done for CSTN
Propagate also upper-case and lower-case (contingent) edgesas done for STNU considering labeled constraints

The mixing of these two kind of propagations requires extending theSTNU-concept of upper-case values!

Luke Hunsberger Recent Advances in Temporal Networks 222 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Generalizing Upper-Case Labels
Given contingent time-points C1,C2, . . . ,Ck, their names arecalled Upper Case (UC) alphabetic-letters (a-letters).
An UC alphabetic label (a-label) is a set of a-letters:

is empty, notated as ⋄; or
contains one or more UC a-letters, notated as Ci1 . . .Cim .

For any UC a-labels ℵ,ℵ′, their conjunction is given by theirunion (i.e., ℵℵ′ = ℵ ∪ ℵ′).

Luke Hunsberger Recent Advances in Temporal Networks 223 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Generalizing labeled values
Each edge is annotated by a triple, called a labeled value

A labeled value is a triple, ⟨δ, ℵ, α⟩, where:
δ ∈ R
ℵ is an a-label
α is a propositional label (from CSTN)

Luke Hunsberger Recent Advances in Temporal Networks 224 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Example 5 (A CSTNU represented using labeled values)

Z

A0

C0 X1 C2 A2

A1 C1

P?
⟨17

,
⋄,

p⟩

⟨3
,

c
,
⊡
⟩

⟨−10
,

C
,
⊡
⟩

⟨7, ⋄, p⟩ ⟨2, ⋄, ¬p⟩

⟨−7, C2, ⊡⟩

⟨1, c2, ⊡⟩

⟨8,
⋄,

p⟩

⟨1, c1, ⊡⟩

⟨−10, C1, ⊡⟩

−4

−8

Edge value v is a shorthand for ⟨v , ⋄, ⊡⟩

Luke Hunsberger Recent Advances in Temporal Networks 225 / 249

Conditional STNs with Uncertainty (CSTNUs)
Propagation Rules for CSTNUs

Forward Upper Case Propagation: z!
Labeled Extended Propagation: zLP/Nc/Uc

Cross Case and Lower Case Propagation: zLc/Cc
Label Removal: zLR

Label Modification: zqR0Label “Spreading”: zqR∗3

Luke Hunsberger Recent Advances in Temporal Networks 226 / 249

Conditional STNs with Uncertainty (CSTNUs)
The z! rule

The z! rule can generate edges with multiple UC letters.

C A Z
⟨−y , C, ⊡⟩ ⟨v , ℵ, β⟩

Conditions:
−y + v < 0
β does not contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 227 / 249

Conditional STNs with Uncertainty (CSTNUs)
The z! rule

The z! rule can generate edges with multiple UC letters.

C A Z
⟨−y , C, ⊡⟩ ⟨v , ℵ, β⟩

⟨−y + v , Cℵ, β⟩

Conditions:
−y + v < 0
β does not contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 227 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLP/Nc/Uc Rule

X Y Z
⟨u, ⋄, α⟩ ⟨v , ℵ, β⟩

Conditions:
u + v < 0
α and β must be consistent.

Luke Hunsberger Recent Advances in Temporal Networks 228 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLP/Nc/Uc Rule

X Y Z
⟨u, ⋄, α⟩ ⟨v , ℵ, β⟩

⟨u + v , ℵ, αβ⟩

Conditions:
u + v < 0
α and β must be consistent.

Luke Hunsberger Recent Advances in Temporal Networks 228 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLc/Cc rule

A C Z
⟨x, c, ⊡⟩ ⟨v , ℵ, β⟩

Conditions:
x + v < 0
C ̸∈ ℵ

β does not contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 229 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLc/Cc rule

A C Z
⟨x, c, ⊡⟩ ⟨v , ℵ, β⟩

⟨x + v , ℵ, β⟩

Conditions:
x + v < 0
C ̸∈ ℵ

β does not contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 229 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLR rule

AZY C
⟨x, c, ⊡⟩⟨w , ℵ1, γ⟩⟨v , Cℵ, β⟩

Conditions:
C ̸∈ ℵℵ1
β, γ can contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 230 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zLR rule

AZY C
⟨x, c, ⊡⟩⟨w , ℵ1, γ⟩⟨v , Cℵ, β⟩

⟨m, ℵℵ1, β ⋆ γ⟩

where m = max{v ,w − x}.
Conditions:

C ̸∈ ℵℵ1
β, γ can contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 230 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zqR0 rule

P? Z
⟨w , ℵ, βp̃⟩

Conditions:
w < 0
β can contain unknown literals
p̃ ∈ {p,¬p,p?}

Luke Hunsberger Recent Advances in Temporal Networks 231 / 249

Conditional STNs with Uncertainty (CSTNUs)
The zqR0 rule

P? Z
⟨w , ℵ, βp̃⟩

⟨w , ℵ, β⟩

Conditions:
w < 0
β can contain unknown literals
p̃ ∈ {p,¬p,p?}

Luke Hunsberger Recent Advances in Temporal Networks 231 / 249

Conditional STNs
The zqR∗3 rule

P? Z Y
⟨w , ℵ1, γ⟩ ⟨v , ℵ, βp̃⟩

Conditions:
β, γ can contain unknown literals
p̃ ∈ {p,¬p,p?}

Luke Hunsberger Recent Advances in Temporal Networks 232 / 249

Conditional STNs
The zqR∗3 rule

P? Z Y
⟨w , ℵ1, γ⟩ ⟨v , ℵ, βp̃⟩

⟨max{v ,w}, ℵℵ1, β ⋆ γ⟩

Conditions:
β, γ can contain unknown literals
p̃ ∈ {p,¬p,p?}

Luke Hunsberger Recent Advances in Temporal Networks 232 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Example 6 (A snapshot of CSTNU DC-checking algorithm)

Z

A0

C0 X1 C2 A2

A1 C1

P?

⟨17
,
⋄,

p⟩

⟨3
,

c
,
⊡
⟩

⟨−10
,

C
,
⊡
⟩

⟨7, ⋄, p⟩ ⟨2, ⋄, ¬p⟩

⟨−7, C2, ⊡⟩

⟨1, c2, ⊡⟩

⟨8,
⋄,

p⟩

⟨1, c1, ⊡⟩

⟨−10, C1, ⊡⟩

−4

−8−7

−10, ⟨−17, C0 , ⊡⟩

−11

−11, ⟨−21, C1 , ⊡⟩

−12, ⟨−13, C1, ⊡⟩...⟨−20, C 1C 2, ⊡⟩

...⟨−18
,

C1 C2
,
⊡
⟩

⟨−1, C1C2, p⟩

This CSTNU is not DC: if C0 occurs at its minimum, while C1 and C2 at their maximum,then X cannot be set satisfying all constraints.
After 123 propagations, the CSTNU contains an explicit negative loop at Z.
The blue constraints are some of those determined by the algorithm before the negativeloop is discovered.

Luke Hunsberger Recent Advances in Temporal Networks 233 / 249

Conditional STNs with Uncertainty (CSTNUs)
DC-Checking Algorithm for CSTNUs

The DC-Checking Algorithm does exhaustive propagation
Returns NO if any negative loop with a consistent label is everfound; otherwise, returns YES.
In positive cases, constructs earliest-first strategy, which isviable due to the spreading lemma for CSTNUs.
The algorithm has exponential-time complexity in the worst case.
Currently we are working on some rule optimizations for making itas practical for a variety of sample networks as the CSTNDC-checking algorithm.

Luke Hunsberger Recent Advances in Temporal Networks 234 / 249

Conditional STNs with Uncertainty (CSTNUs)
CSTNU Summary

Theory of dynamic controllability for CSTNUs has a solidfoundation.
Two competing DC-checking algorithms∗, both exponential.
Propagation-based algorithms show promise, but require furtherinvestigation.
Alternatives to earliest-first strategy?

∗ [Hunsberger and Posenato, 2018a]

Luke Hunsberger Recent Advances in Temporal Networks 235 / 249

CDTNUs
Adding Disjunction to CSTNUs

A Conditional Disjunctive Temporal Network with Uncertainty(CDTNU) augments a CSTNU to include disjunctive constraints.
Possible to convert the DC-checking problem for CDTNUs into a
controller-synthesis problem for Timed Game Automata(TGAs)∗.
Highlights connections between temporal networks and TGAs,but algorithm not yet practical.

∗ [Cimatti et al., 2016]

Luke Hunsberger Recent Advances in Temporal Networks 236 / 249

CDTNUs
Sample Workflow

Luke Hunsberger Recent Advances in Temporal Networks 237 / 249

CDTNUs
TGA Encoding of Workflow

Luke Hunsberger Recent Advances in Temporal Networks 238 / 249

References I
M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J.C.-J. Hsu, A. Jonsson, B. Kanefsky,P. Morris, Kanna Rajan, J. Yglesias, B.G. Chafin, W.C. Dias, and P.F. Maldague. Mapgen:mixed-initiative planning and scheduling for the mars exploration rover mission. IEEE

Intelligent Systems, 19(1):8–12, 2004.
Luca Anselma, Paolo Terenziani, Stefania Montani, and Alessio Bottrighi. Towards acomprehensive treatment of repetitions, periodicity and temporal constraints in clinicalguidelines. Artificial Intelligence in Medicine, 38(2):171–195, October 2006. ISSN0933-3657. doi: 10.1016/j.artmed.2006.03.007.
Michael J. Bannister and David Eppstein. Randomized Speedup of the Bellman-Ford Algorithm.In 9th Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 41–47,2012. ISBN 978-1-61197-213-9. doi: 10.1137/1.9781611973020.6.
Stefan Behnel, Robert W. Bradshaw, and Dag Sverre Seljebotn. Cython tutorial. In

Proceedings of the 8th Python in Science Conference (SciPy 2009), 2009.
Richard Bellman. On a routing problem. Q. Appl. Math., 16:87–90, 1958.
J. Benton, Amanda Coles, and Andrew Coles. Temporal Planning with Preferences andTime-Dependent Continuous Costs. In Proceedings of the Twenty-Second International

Conference on Automated Planning and Scheduling, pages 2–10, 2012. URL
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708.

Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Temporal reasoning in workflowsystems. Dist. & Paral. Data., 11(3):269–306, 2002. doi: 10.1023/A:1014048800604.
Luke Hunsberger Recent Advances in Temporal Networks 239 / 249

https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708

References II
John L Bresina, Ari K Jónsson, Paul H Morris, and Kanna Rajan. Activity Planning for the MarsExploration Rovers. In Proceedings of the Fifteenth International Conference on

Automated Planning and Scheduling (ICAPS 2005), page n.n., 2005. URL
https://www.aaai.org/Papers/ICAPS/2005/ICAPS05-005.pdf.

Massimo Cairo, Carlo Comin, and Romeo Rizzi. Instantaneous Reaction-Time inDynamic-Consistency Checking of Conditional Simple Temporal Networks. In 23rd Int.
Symp. on Temporal Representation and Reasoning (TIME-2016), pages 80–89, 2016. doi:
10.1109/TIME.2016.16.

Massimo Cairo, Luke Hunsberger, Roberto Posenato, and Romeo Rizzi. A Streamlined Modelof Conditional Simple Temporal Networks - Semantics and Equivalence Results. In 24th Int.
Symp. on Temporal Representation and Reasoning (TIME-2017), volume 90 of LIPIcs,pages 10:1–10:19, 2017. ISBN 978-3-95977-052-1. doi: 10.4230/LIPIcs.TIME.2017.10.

Massimo Cairo, Luke Hunsberger, and Romeo Rizzi. Faster Dynamic Controllablity Checkingfor Simple Temporal Networks with Uncertainty. In 25th International Symposium on
Temporal Representation and Reasoning (TIME-2018), volume 120 of LIPIcs, pages8:1–8:16, 2018. doi: 10.4230/LIPIcs.TIME.2018.8.

Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. A Constraint-Based Method for ProjectScheduling with Time Windows. Journal of Heuristics, 8(1):109–136, January 2002. ISSN1572-9397. doi: 10.1023/A:1013617802515.

Luke Hunsberger Recent Advances in Temporal Networks 240 / 249

https://www.aaai.org/Papers/ICAPS/2005/ICAPS05-005.pdf

References III
Amedeo Cesta, Gabriella Cortellessa, Riccardo Rasconi, Federico Pecora, MassimilianoScopelliti, and Lorenza Tiberio. Monitoring elderly people with the ROBOCARE domesticenvironment: Interaction synthesis and user evaluation. In Comput. Intell., volume 27,pages 60–82, 2011. doi: 10.1111/j.1467-8640.2010.00372.x.
Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco Roveri.Sound and complete algorithms for checking the dynamic controllability of temporal networkswith uncertainty, disjunction and observation. In Andrea Cesta, Carlo Combi, and FrancoisLaroussinie, editors, 21st Int. Symp. on Temporal Representation and Reasoning

(TIME-2014), pages 27–36, 2014a. doi: 10.1109/TIME.2014.21.
Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, and Marco Roveri. Using timed gameautomata to synthesize execution strategies for simple temporal networks with uncertainty.In 28th National Conf. on Artificial Intelligence (AAAI-2014), 2014b.
Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and Marco Roveri.Dynamic controllability via timed game automata. Acta Informatica, 53(6–8):681–722, 2016.ISSN 1432-0525. doi: 10.1007/s00236-016-0257-2.
Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. Planning with Problems RequiringTemporal Coordination. In Proceedings of the Twenty-Third AAAI Conference on Artificial

Intelligence, pages 892–897, 2008. URL
https://www.aaai.org/Papers/AAAI/2008/AAAI08-142.pdf.

Luke Hunsberger Recent Advances in Temporal Networks 241 / 249

https://www.aaai.org/Papers/AAAI/2008/AAAI08-142.pdf

References IV
Carlo Combi and Roberto Posenato. Controllability in temporal conceptual workflow schemata.In Business Process Management, 7th International Conference, BPM 2009, volume 5701of LNCS, pages 64–79. Springer, 2009. ISBN 3-642-03847-6. doi:

10.1007/978-3-642-03848-8_6.
Carlo Combi, Matteo Gozzi, Barbara Oliboni, Jose M. Juarez, and Roque Marin. Temporalsimilarity measures for querying clinical workflows. Artif. Intell. Med., 46(1):37–54, 2009.ISSN 09333657. doi: 10.1016/j.artmed.2008.07.013.
Carlo Comin and Romeo Rizzi. Dynamic consistency of conditional simple temporal networksvia mean payoff games: a singly-exponential time dc-checking. In 22st Int. Symp. on

Temporal Representation and Reasoning (TIME 2015), pages 19–28, 2015. doi:
10.1109/TIME.2015.18.

Patrick R. Conrad and Brian C. Williams. Drake: An efficient executive for temporal plans withchoice. J. of Artificial Intelligence Research (JAIR), 42:607–659, 2011. URL
http://dx.doi.org/10.1613/jair.3478.

Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer Afaque, Abhishek Sharma, andArjun Jain. Learning 3D Human Pose from Structure and Motion. In Computer Vision-ECCV,pages 679–696, 2018. ISBN 978-3-030-01240-3. doi: 10.1007/978-3-030-01240-3_41.
Rina Dechter, Itay Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelligence, 49(1-3):61–95, 1991. doi: 10.1016/0004-3702(91)90006-6.
E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–271, 1959. ISSN 0945-3245. doi: 10.1007/BF01386390.

Luke Hunsberger Recent Advances in Temporal Networks 242 / 249

http://dx.doi.org/10.1613/jair.3478

References V
Georg Duftschmid, Silvia Miksch, and Walter Gall. Verification of temporal schedulingconstraints in clinical practice guidelines. Artif. Intell. Med., 25(2):93–121, 2002. ISSN09333657. doi: 10.1016/S0933-3657(02)00011-8.
Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, June 1962. ISSN0001-0782. doi: 10.1145/367766.368168.
Lester R. Ford and D. R. Fulkerson. Flows in networks, volume 59. Princeton University Press,1962.
Jeremy Frank and Ari Jónsson. Constraint-Based Attribute and Interval Planning. Constraints,8(4):339–364, 2003. ISSN 13837133. doi: 10.1023/A:1025842019552.
Malik Ghallab. On chronicles: Representation, on-line recognition and learning. In

Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR’96), pages 597–606. Morgan Kaufmann, 1996.

Luke Hunsberger. Fixing the semantics for dynamic controllability and providing a morepractical characterization of dynamic execution strategies. In 16th International Symposium
on Temporal Representation and Reasoning (TIME-2009), pages 155–162, 2009. doi:
10.1109/TIME.2009.25.

Luke Hunsberger. A fast incremental algorithm for managing the execution of dynamicallycontrollable temporal networks. In Nicolas Markey and Jef Wijsen, editors, 17th
International Symposium on Temporal Representation and Reasoning (TIME-2010),pages 121–128, 2010. doi: 10.1109/TIME.2010.16.

Luke Hunsberger Recent Advances in Temporal Networks 243 / 249

References VI
Luke Hunsberger. Magic Loops in Simple Temporal Networks with Uncertainty–ExploitingStructure to Speed Up Dynamic Controllability Checking. In 5th International Conference on

Agents and Artificial Intelligence (ICAART-2013), volume 2, pages 157–170, 2013.
Luke Hunsberger. A faster algorithm for checking the dynamic controllability of simple temporalnetworks with uncertainty. In 6th International Conference on Agents and Artificial

Intelligence (ICAART-2014), 2014a.
Luke Hunsberger. Magic Loops and the Dynamic Controllability of Simple Temporal Networkswith Uncertainty. In Joaquim Filipe and Ana Fred, editors, Agents and Artificial Intelligence,volume 449 of Communications in Computer and Information Science (CCIS), pages332–350, 2014b. doi: 10.1007/978-3-662-44440-5_20.
Luke Hunsberger. New techniques for checking dynamic controllability of simple temporalnetworks with uncertainty. In B. Duval, J. van den Herik, S. Loiseau, and J. Filipe, editors,

6th International Conference on Agents and Artificial Intelligence (ICAART-2014),
Revised Selected Papers, volume 8946 of LNCS, pages 170–193. 2015a.

Luke Hunsberger. Efficient execution of dynamically controllable simple temporal networks withuncertainty. Acta Informatica, 53(2):89–147, 2015b. doi: 10.1007/s00236-015-0227-0.
Luke Hunsberger and Roberto Posenato. Checking the dynamic consistency of conditionaltemporal networks with bounded reaction times. In Amanda Jane Coles, Andrew Coles,Stefan Edelkamp, Daniele Magazzeni, and Scott Sanner, editors, 26th Int. Conf. on

Automated Planning and Scheduling, ICAPS 2016, pages 175–183, 2016. URL
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108.

Luke Hunsberger Recent Advances in Temporal Networks 244 / 249

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108

References VII
Luke Hunsberger and Roberto Posenato. Sound-and-Complete Algorithms for Checking theDynamic Controllability of Conditional Simple Temporal Networks with Uncertainty. In 25th

Int. Symp. on Temporal Representation and Reasoning (TIME-2018), volume 120 of
LIPIcs, pages 14:1–14:17, 2018a. doi: 10.4230/LIPIcs.TIME.2018.14.

Luke Hunsberger and Roberto Posenato. Simpler and Faster Algorithm for Checking theDynamic Consistency of Conditional Simple Temporal Networks. In 26th Int. Joint Conf. on
Artificial Intelligence, (IJCAI-2018), pages 1324–1330, 2018b. doi:
10.24963/ijcai.2018/184.

Luke Hunsberger and Roberto Posenato. Faster Dynamic-Consistency Checking forConditional Simple Temporal Networks. In 30th Int. Conf. on Automated Planning and
Scheduling, ICAPS 2020, volume 30, pages 152–160, 2020. URL
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6656.

Luke Hunsberger and Roberto Posenato. Speeding up the RUL−

Dynamic-Controllability-Checking Algorithm for Simple Temporal Networks with Uncertainty.In 36th AAAI Conference on Artificial Intelligence (AAAI-22), volume 36-9, pages9776–9785. AAAI Pres, 2022. doi: 10.1609/aaai.v36i9.21213.
Luke Hunsberger and Roberto Posenato. A Faster Algorithm for Converting Simple TemporalNetworks with Uncertainty into Dispatchable Form. Information and Computation, 293(105063):1–21, 2023. ISSN 0890-5401. doi: 10.1016/j.ic.2023.105063.

Luke Hunsberger Recent Advances in Temporal Networks 245 / 249

https://www.aaai.org/ojs/index.php/ICAPS/article/view/6656

References VIII
Luke Hunsberger, Roberto Posenato, and Carlo Combi. A Sound-and-CompletePropagation-based Algorithm for Checking the Dynamic Consistency of Conditional SimpleTemporal Networks. In Fabio Grandi, Martin Lange, and Alessio Lomuscio, editors, 22nd Int.

Symp. on Temporal Representation and Reasoning (TIME-2015), pages 4–18, 2015. doi:
10.1109/TIME.2015.26.

Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. J. of ACM, 24(1):1–13, 1977. ISSN 0004-5411. doi: 10.1145/321992.321993.
Ari K Jonsson, Paul H Morris, Nicola Muscettola, and Kanna Rajan. Planning in InterplanetarySpace: Theory and Practice. In Proceeding of AIPS 2000, page 10, 2000. ISBN1-57735-111-8. URL https://www.aaai.org/Papers/AIPS/2000/AIPS00-019.pdf.
Phil Kim, Brian C. Williams, and Mark Abramson. Executing reactive, model-based programsthrough graph-based temporal planning. In 18th Int. Joint Conf. on Artificial Intelligence

(IJCAI-2001), pages 487–493, 2001.
Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG CP optimizer forscheduling. Constraints, 23(2):210–250, April 2018. ISSN 1572-9354. doi:

10.1007/s10601-018-9281-x.
Solange Lemai and Felix Ingrand. Interleaving Temporal Planning and Execution in RoboticsDomains. In Proceedings of the Nineteenth National Conference on Artificial Intelligence,pages 617–622, 2004. URL https://www.aaai.org/Papers/AAAI/2004/AAAI04-098.pdf.

Luke Hunsberger Recent Advances in Temporal Networks 246 / 249

https://www.aaai.org/Papers/AIPS/2000/AIPS00-019.pdf
https://www.aaai.org/Papers/AAAI/2004/AAAI04-098.pdf

References IX
Renaud Masson, Fabien Lehuédé, and Olivier Péton. The Dial-A-Ride Problem with Transfers.

Computers & Operations Research, 41:12–23, 2014. ISSN 0305-0548. doi:
10.1016/j.cor.2013.07.020.

Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Henthorn, and Rob McEwen.A deliberative architecture for AUV control. In Proc. - IEEE Int. Conf. Robot. Autom., pages1049–1054, 2008. ISBN 9781424416479. doi: 10.1109/ROBOT.2008.4543343.
Paul Morris. A Structural Characterization of Temporal Dynamic Controllability. In Principles

and Practice of Constraint Programming (CP-2006), volume 4204, pages 375–389, 2006.doi: 10.1007/11889205_28.
Paul Morris. Dynamic controllability and dispatchability relationships. In CPAIOR 2014, volume8451 of LNCS, pages 464–479. Springer, 2014. doi: 10.1007/978-3-319-07046-9_33.
Paul Morris. The Mathematics of Dispatchability Revisited. In 26th International Conference

on Automated Planning and Scheduling (ICAPS-2016), pages 244–252, 2016.
Paul Morris, Nicola Muscettola, and Thierry Vidal. Dynamic control of plans with temporaluncertainty. In IJCAI 2001: Proc. of the 17th international joint conference on Artificial

intelligence, volume 1, pages 494–499, 2001.
Paul H. Morris and Nicola Muscettola. Temporal dynamic controllability revisited. In 20th

National Conference on Artificial Intelligence (AAAI-2005), pages 1193–1198, 2005. URL
https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf.

Luke Hunsberger Recent Advances in Temporal Networks 247 / 249

https://www.aaai.org/Papers/AAAI/2005/AAAI05-189.pdf

References X
N. Muscettola, P.P. Nayak, B. Pell, and B.C. Williams. Remote Agent: To boldly go where noAI system has gone before. Artificial Intelligence, 103(1-2):5–47, 1998a. doi:

10.1016/s0004-3702(98)00068-x.
Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos. Reformulating Temporal Plans forEfficient Execution. In 6th Int. Conf. on Principles of Knowledge Representation and

Reasoning (KR-1998), pages 444–452, 1998b.
Wheeler Ruml, Minh B. Do, and Markus P.J. Fromherz. On-line planning and scheduling forhigh-speed manufacturing. In ICAPS 2005 - Proc. 15th Int. Conf. Autom. Plan. Sched.,pages 30–39, 2005. ISBN 1577352203.
Stephen F. Smith, Anthony Gallagher, and Terry Zimmerman. Distributed management offlexible times schedules. In Proceedings of the 6th international joint conference on

Autonomous agents and multiagent systems, AAMAS ’07, pages 1–8. ACM, May 2007.ISBN 978-81-904262-7-5. doi: 10.1145/1329125.1329215.
Ioannis Tsamardinos, Nicola Muscettola, and Paul Morris. Fast Transformation of TemporalPlans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998),pages 254–261, 1998.
Ioannis Tsamardinos, Thierry Vidal, and Martha E. Pollack. CTP: A new constraint-basedformalism for conditional, temporal planning. Constraints, 8:365–388, 2003. doi:

10.1023/A:1025894003623.
Stephen Warshall. A Theorem on Boolean Matrices. J. of the ACM, 9(1):11–12, 1962.

Luke Hunsberger Recent Advances in Temporal Networks 248 / 249

References XI

Jin Y. Yen. An algorithm for finding shortest routes from all source nodes to a given destinationin general networks. Quarterly of Applied Mathematics, 27(4):526–530, 1970. ISSN0033-569X. doi: 10.1090/qam/253822.
Hyun Joong Yoon and Doo Yong Lee. Online scheduling of integrated single-wafer processingtools with temporal constraints. IEEE Trans. Semicond. Manuf., 18(3):390–398, August2005. ISSN 08946507. doi: 10.1109/TSM.2005.852103.
H. L. S. Younes and R. G. Simmons. VHPOP: Versatile Heuristic Partial Order Planner.

Journal of Artificial Intelligence Research, 20:405–430, December 2003. ISSN 1076-9757.doi: 10.1613/jair.1136.
Li Zhou, Genevieve B. Melton, Simon Parsons, and George Hripcsak. A temporal constraintstructure for extracting temporal information from clinical narrative. Journal of Biomedical

Informatics, 39(4):424–439, 2006. ISSN 1532-0464. doi: 10.1016/j.jbi.2005.07.002. URL
https://www.sciencedirect.com/science/article/pii/S1532046405000730.

Luke Hunsberger Recent Advances in Temporal Networks 249 / 249

https://www.sciencedirect.com/science/article/pii/S1532046405000730

	Simple Temporal Networks (STNs)
	Introduction to STNs
	STN Foundations

	Consistency-Checking Algorithms for STNs
	Floyd-Warshall Algorithm
	Bellman-Ford Algorithm and Friends
	Dijkstra's Algorithm
	Johnson's Algorithm

	Cython
	Introduction to Cython
	Cython Code for STNs

	Real-Time Execution and Dispatchability for STNs
	Motivating Dispatchability
	Filtering Algorithm for STN Dispatchability
	More Efficient STN Dispatchability Algorithm

	Simple Temporal Networks with Uncertainty (STNUs)
	DC-Checking Algorithms for STNUs
	Morris' 2006 O(n4)-time DC-checking algorithm
	Morris' 2014 O(n3) DC-checking algorithm
	The RUL- DC-checking Algorithm
	The RUL2021 Algorithm

	Dispatchability for STNUs
	Motivating Dispatchability for STNUs
	Morris' 2014 Algorithm for STNU Dispatchability
	Faster STNU Dispatchability Alg.: blackHunsbergerP23

	Conditional Simple Temporal Networks (CSTNs)
	Conditional STNs with Uncertainty (CSTNUs)
	CSTNU with Disjunction (CDTNUs)
	References

