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Simple Temporal Networks (STNs)
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Introduction to STNs
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Simple Temporal Networks
Overview

Temporal networks are data structures for representing andreasoning about temporal constraints on activities.
A Simple Temporal Network (STN) is the most basic kind oftemporal network:

1 An STN can accommodate such constraints as release times,deadlines, precedence constraints, and duration constraints.
[Dechter et al., 1991]

2 The fundamental computational tasks associated withSTNs—including checking consistency and managing
execution—can be done in polynomial time.
[Dechter et al., 1991; Tsamardinos et al., 1998]

STNs form the core of numerous more expressive kinds oftemporal networks.
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Simple Temporal Networks
Research and Applications

STNs are used as a temporal reasoning tool for research andreal-world applications.
In September 2021, a search of the literature for Simple
Temporal Networks* found:

> 1700 research articles in Google Scholar(having the subject in any part of the article);
242 research articles in Scopus(having the subject in title or abstract)

The most cited papers on STNs fall mainly within two areas:
planning/scheduling for robots

industrial, business, and health-care management systems
*The query string was "simple temporal constraint network" OR "simple temporal

network" OR "simple temporal problem" OR "simple temporal constraint problem"
OR "simple temporal constraint networks" OR "simple temporal networks"
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Simple Temporal Networks
Applications in planning/scheduling for robots

Summary of articles with more than 150 citations in Google Scholar.
Remote Agent (RA): on-board controller for Deep Space One,NASA’s first New Millennium mission [Muscettola et al., 1998a]

Needs flexible plans, runs multiple parallel threads of planningand scheduling, uses fast constraint propagation algorithms.Fast constraint propagation obtained using STNs and their localdispatchable property.
Planners such as RAX-PS [Jonsson et al., 2000], MAPGEN [Ai-Chang
et al., 2004; Bresina et al., 2005], KIRK [Kim et al., 2001], VHPOP [Younes
and Simmons, 2003], EUROPA-2 [Frank and Jónsson, 2003],CRIKEY3 [Coles et al., 2008], OPTIC [Benton et al., 2012],IXTET-EXE [Lemai and Ingrand, 2004],. . .
Control component for Autonomous Underwater Vehicles [McGann
et al., 2008]
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Simple Temporal Networks
Mars Exploration Rover (MER) [Bresina et al., 2005]

In constraint-based planning,actions and states are describedas holding over intervals of time.
The temporal extent of an actionor state is specified in terms ofstart and end times, representedby variables, connected byconstraints.
Typically, any partial plan, whichis a set of activities connected byconstraints, gives rise to a SimpleTemporal Network, that admits alow-order checking algorithm. Typical plan with temporal constraints.

∗Figures are from [Bresina et al., 2005]
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Simple Temporal Networks
Applications in industrial, business and health-care management systems

Summary of articles with more than 60 citations in Google Scholar.
Temporal reasoning in workflows [Bettini et al., 2002; Cesta et al., 2011;
Combi and Posenato, 2009]
Temporal reasoning in health-care systems [Anselma et al., 2006;
Combi et al., 2009; Duftschmid et al., 2002; Zhou et al., 2006]
Scheduling (in industrial processes) [Cesta et al., 2002; Ruml et al.,
2005; Smith et al., 2007; Yoon and Lee, 2005]
Chronicles on-line recognition [Ghallab, 1996]
Dial-A-Ride Problem with Transfers [Masson et al., 2014]
Image pose reconstruction [Dabral et al., 2018]
IBM ILOG CP optimizer for scheduling [Laborie et al., 2018]
. . .
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Simple Temporal Networks
The Dial-A-Ride Problem with Transfers [Masson et al., 2014] 1/2

The Dial-A-Ride Problem with Transfers(DARPT): find set of minimum costroutes to satisfy a set of transportationrequests.
Request = transporting a set of users from aset of pickup points to a set of deliverypoints.
Users associated with distinct requests canshare a vehicle if its capacity not exceeded.
Max. ride time associated with each request.
Users can be transferred from one vehicle toanother at intermediate points.
Goal: Minimize total distance traveled whilestaying within maximum ride time for eachuser.

DARPT is NP-hard.

pi must go to di . 1 vehicle. Temporalranges allowed for pickup/delivery.DARPT solution is 20% more efficient.
∗Figures are from [Masson et al., 2014]
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Simple Temporal Networks
The Dial-A-Ride Problem with Transfers [Masson et al., 2014] 2/2

Solution algorithm based on AdaptiveLarge Neighborhood Search (ALNS)
It destroys and repairs a solution iterativelyto improve it.
Heuristic operators for either destroying(removing requests from routes) or repairing(reinserting requests) the solution.
Each possible solution must satisfy allconstraints (feasibility).
Evaluating route feasibility for the DARPT ⇔proving the consistency of an STN.

STNs have been employed because it isnecessary to check a large number ofpossible solutions—which can be donevery efficiently with STNs.
pi must go to di . 1 vehicle. Rangesare allowed temporal range forpickup/delivery.

∗Figures are from [Masson et al., 2014]
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Simple Temporal Networks
Features and Benefits

An STN has time-points and (simple) temporal constraints.
STNs are expressive: can represent deadlines, release times,duration constraints, and inter-action constraints.
STNs are flexible: Time-points can “float”;not “nailed down” until they are executed.
Each STN has a graphical representation:

•

•

•

•

•

•

Efficient algorithms exist for determining consistency, managingreal-time execution, accommodating new constraints, etc.
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STN Foundations
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Simple Temporal Network
Definition [Dechter et al., 1991]

Definition 1 (Simple Temporal Network)
A Simple Temporal Network (STN) is a pair, S = (T , C), where:

T is a set of real-valued variables called time-points; and
C is a set of binary constraints, each of the form:

Y − X ≤ δ

where X ,Y ∈ T and δ ∈ R.
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Simple Temporal Network
The Zero Time-Point, Z

A special time-point, Z, whose value is fixed at 0.
Binary constraints involving Z are equivalent to unary constraints.

Example 1
X − Z ≤ 7 ⇐⇒ X ≤ 7

Z − X ≤ −3 ⇐⇒ X ≥ 3
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Simple Temporal Network
Solutions, Consistency, Simple Temporal Problem

A solution to an STN S = (T , C) is a complete set of assignmentsto the time-points in T :
{X1 = w1, X2 = w2, . . . , Xn = wn}

that together satisfy all of the constraints in C.
An STN with at least one solution is consistent.

The problem of determining whether an STN is consistent iscalled the Simple Temporal Problem (STP).
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Simple Temporal Network
STN for Travel Example

NYC → Rome (In Rome) Rome → NYC
X1 X2 X3 X4

T = {Z,X1,X2,X3,X4}, where Z = Noon, June 8

C =



Z − X1 ≤ −4 (Leave NYC after 4 p.m., June 8)
X4 − Z ≤ 250 (Return NYC by 10 p.m., June 18)
X4 − X1 ≤ 168 (Gone no more than 7 days)
X2 − X3 ≤−120 (In Rome at least 5 days)
X4 − X3 ≤ 7 (Return flight less than 7 hrs)
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Simple Temporal Network
Graph for an STN [Dechter et al., 1991]

The graph for an STN, S = (T , C), is a graph, G = (T , E), where:
Time-points in S ⇐⇒ nodes in G

Constraints in C ⇐⇒ edges in E:
Y − X ≤ δ X δ Y
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Simple Temporal Network
Graphical Representation

Constraint(s) Edge(s) Interval Notation
Y − X ≤ 7 X Y

7
X Y

(−∞, 7]

X − Y ≤ −3
(equiv: Y − X ≥ 3) X Y

−3 X Y
[3,+∞)

3 ≤ Y − X ≤ 7 X Y
7
−3 X Y

[3, 7]

4 ≤ X ≤ 9 Z X
9
−4 Z X

[4, 9]
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Simple Temporal Network
Graph for Travel Example


Z − X1 ≤ −4, X4 − Z ≤ 250
X4 − X1 ≤ 168, X2 − X3 ≤ −120
X4 − X3 ≤ 7, X1 − X2 ≤ 0
X3 − X4 ≤ 0



Z X1 X2 X3 X4

250

−4
168

0 −120 7
0
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Simple Temporal Network
Implicit Constraints

Explicit constraints combine (propagate) to form implicit constraints:
X − W ≤ 30

+ Y − X ≤ 40
Y − W ≤ 70 W

X

Y

30 40

70
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Simple Temporal Network
Chains of Constraints as Paths

Chains of constraints correspond to paths in the graph.
Stronger constraints correspond to shorter paths.

Xi

•

•
•

Xj

•
•

4
−3

4 6

2
3

4

9
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Simple Temporal Network
Distance Matrix [Dechter et al., 1991]

Definition 2 (Distance Matrix)
The Distance Matrix for an STN S is a matrix D defined by:
D(X ,Y ) = Length of Shortest Path from X to Y in the graph for S

X

Y

D(X ,Y )

The strongest implicit constraint on Y − X in S is:
Y − X ≤ D(X ,Y )
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Simple Temporal Network
Distance Matrix for Travel Example

Z X1 X2 X3 X4

250

−4
168

0 −120 7
0

D Z X1 X2 X3 X4Z 0 130 130 250 250X1 -4 0 48 168 168X2 -4 0 0 168 168X3 -124 -120 -120 0 7X4 -124 -120 -120 0 0
Gray cells correspond to explicit edges.

Luke Hunsberger Recent Advances in Temporal Networks 26 / 249



Simple Temporal Network
Fundamental Theorem of STNs [Dechter et al., 1991]

For an STN S, with graph G, and distance matrix D,the following are equivalent:
S is consistent
D has non-negative values down its main diagonal
G has no negative-length loops
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Consistency-Checking Algorithms
for STNs
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Sample Consistency-Checking Algorithms

Floyd-Warshall (computes D; generates solutions)
Bellman-Ford SSSP (checks consistency; generates solution)
Speed-ups to Bellman-Ford (up to 6 times faster)
Dijkstra SSSP (only for non-neg. edges, but useful...)
Johnson (uses BF and Dijkstra to compute D)
Directional and Partial Path Consistency (DPC and PPC)
Incremental algorithms
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Floyd-Warshall Algorithm
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Floyd-Warshall Algorithm
Computes distance matrix D in O(n3) time [Floyd, 1962; Warshall, 1962]

Xi

Xr

Xj

U V

D(X i,Xr) D(Xr ,Xj )
D(Xi ,Xj )

Initialize D(_,_) using edge-weights
for r=1 to n

for i=1 to n
for j=1 to n

D(Xi,Xj) := min{D(Xi,Xj), D(Xi,Xr) + D(Xr,Xj)}
return D

If a shortest path from U to V contains Xr as an interior point,then after the r th round, that shortest path can ignore Xr .
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Extracting Solutions from D
[Dechter et al., 1991]

For each X ∈ T , its time window is: [−D(X ,Z),D(Z,X )]

−D(X ,Z) is a lower-bound for X because
Z − X ≤ D(Z ,X ) ⇐⇒ X ≥ −D(Z ,X ).

D(Z,X ) is an upper-bound for X because
X − Z ≤ D(X ,Z) ⇐⇒ X ≤ D(X ,Z).

Two easy-to-find solutions:
Earliest-times solution:
X1 = −D(X1,Z), X2 = −D(X2,Z), . . . , Xn = −D(Xn,Z)
Latest-times solution:
X1 = D(Z,X1), X2 = D(Z,X2), . . . , Xn = D(Z,Xn).
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GenSoln
Generating any and all solutions from D [Dechter et al., 1991]

Given any consistent STN graph G = (T , E) with distance matrix D:
1 U := T (currently unexecuted time-points)
2 For each X ∈ T , TW(X ) = [−D(X ,Z),D(Z ,X )] (time windows)
3 Choose: Pick some X ∈ U , and some t ∈ TW(X )

4 Execute: set X := t , and remove X from U

5 Propagate: Update time windows:
For each Y ∈ U : TWY := TWY ∩ [t −D(Y ,X ), t +D(X ,Y )]

Upper: Y −X ≤ D(X ,Y ) =⇒ Y ≤ X +D(X ,Y ) = t +D(X ,Y )Lower: X −Y ≤ D(Y ,X) =⇒ Y ≥ X −D(Y ,X) = t −D(Y ,X)

6 If U non-empty, go back to (3); else done.
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Bellman-Ford Algorithm and Friends
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Bellman-Ford Algorithm: Version 1
An O(mn)-time SSSP∗ algorithm [Bellman, 1958; Ford and Fulkerson, 1962]

Introduce new node S ̸∈ T to use as a source node.
Goal: Compute d(X) = distance from S to X , for each X ∈ T .
Initialization: d(X) = 0 for each X ∈ T .

S

X1 X2 X3
X4

X5

0

for i=1 to (n-1),
for each edge (U,δ,V) in graph,

d(V) := min{d(V), d(U) + δ}

for each edge (U,δ,V) in graph,
if (d(V) > d(U) + δ) return false

return true

S

U

V

d(U)

d(V )

δ

⇒ After kth iteration, will know length of every shortest path having at most k edges.
∗ SSSP = single-source, shortest-path
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Extracting a Solution from Bellman-Ford
[Bellman, 1958; Ford and Fulkerson, 1962]

For a consistent STN S, the distance function d(X ) computed byBellman-Ford (Version 1) is a solution for S.
d(V ) ≤ d(U) +D(U,V ) ⇐⇒ d(V )− d(U) ≤ D(U,V )

S

U

V

d(U)

d(V )

D(U,V )
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Bellman-Ford Algorithm: Version 2
An O(mn)-time SSSP∗ algorithm [Bellman, 1958; Ford and Fulkerson, 1962]

Pick any node S ∈ T to use as the source node.
Goal: Compute d(X) = distance from S to X , for each X ∈ T .
Initialization: d(X) = ∞ for each X ∈ T \ {S}.

S

X1 X2 X3
X4

X5

∞

for i=1 to (n-1),
for each edge (U,δ,V) in graph,

d(V) := min{d(V), d(U) + δ}

for each edge (U,δ,V) in graph,
if (d(V) > d(U) + δ) return false

return true

S

U

V

d(U)

d(V )

δ

⇒ After kth iteration, will know length of every shortest path having at most k edges.
∗ SSSP = single-source, shortest-path
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Speed-ups of Bellman-Ford
[Bannister and Eppstein, 2012; Yen, 1970]

Stop early if no changes in preceding iteration.
If no changes to d(U) in preceding iteration, no need to checkedges emanating from U in current iteration.
Given an ordering/ranking of the time-points, partition the graphinto two sub-graphs, G+ and G−, where:

◦ G+ contains edges from lower-ranked to higher-rankedtime-points, and
◦ G− contains edges from higher-ranked to lower-rankedtime-points.

During odd iterations, only propagate along edges in G+;during even iterations, propagate along edges in G−.
Random ranking can make Bellman-Ford up to six times faster.
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Speed-ups of Bellman-Ford (cont’d.)
[Bannister and Eppstein, 2012; Yen, 1970]

Suppose source node is X0 ∈ T .
Initialization: For each X ∈ T , d(X ) = ∞, except d(X0) = 0.
Suppose ranking is: {X0,X1,X2, . . . ,Xn}.
Just one iteration to compute lengths of all shortest paths in G+.
Example: X0 X2 X4 X7 X8 X9

−1 −3 2 −8 1

k + 1 iterations to compute lengths of all shortest paths having atmost k transitions between edges in G+ and edges in G−.
Example: X0 X1 X4 X3 X2 X9 X12

1 −7 −1 3 1 2
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
SSSP algorithm for checking consistency in O(m + n log n) time [Dijkstra, 1959]

Only works on STN graphs with non-negative edges

For given source node S ∈ T ,computes d(X ) = distance from S to X , for all X .
O(m + n log n) if using Fibonacci heap for priority queue
d(X ) := ∞ for all X, but d(S) := 0
Q := an empty priority queue
Insert S into Q with priority 0
while Q non-empty,

U := ExtractMinFrom(Q)
for each successor edge (U, δ,V ),

d(V ) := min{d(V ),d(U) + δ}
return d

S

U

V

d(U)

d(V )

δ
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Johnson’s Algorithm
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Johnson’s Algorithm
Computes D in O(mn + n2 log n) time [Johnson, 1977]

Dijkstra’s alg. only applies to graphs with non-negative edges.
However, for any consistent STN S:

◦ Use Bellman-Ford to generate a solution f .
◦ Use f as a potential function to re-weight edges in graph tonon-negative values (next slide)
◦ Then, for each X , use Dijkstra to compute one row of D.
◦ Easy to convert between original and non-negative weights(next slide).

The result is the O(mn + n2 log n)-time Johnson’s Algorithm.
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Potential Functions & Re-weighted Graphs
Given: f : T → R, a solution for an STN S = (T , C).

Then f (Y )− f (X ) ≤ δ for each constraint (Y − X ≤ δ) ∈ C

In other words, 0 ≤ f (X ) + δ − f (Y )

Let C′ = {(X , δ′,Y ) | (X , δ,Y ) ∈ C}, where δ′ = f (X ) + δ − f (Y )

Then S ′ = (T , C′) has only non-negative edges.
Therefore, can use Dijkstra’s SSSP algorithm on S ′

⇒ Shortest paths in S correspond to shortest paths in S ′:
D′(X ,Y ) = f (X ) +D(X ,Y )− f (Y )

X W Y
-4 2

(f (X)+ (-4) −f (W )) + (f (W )+ 2 −f (Y )) = f (X)+ (-4 + 2) −f (Y )
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Johnson’s Algorithm
[Johnson, 1977]

Given: an STN, S = (T , C)

Run Bellman-Ford to generate solution f : T → R for S.
Let S ′ = (T , C′) be re-weighted graph based on f :

δ′ = f (X ) + δ − f (Y ) ≥ 0 for each (X , δ,Y ) ∈ C.
For each X ∈ T , run Dijkstra on S ′ with X as source node

— computes D′(X ,Y ) for all Y ∈ T .
Reverse the re-weighting to obtain D for S:

D(X ,Y ) = −f (X ) +D′(X ,Y ) + f (Y ).
Complexity: O(mn) + n ∗ O(m + n log n) = O(mn + n2 log n)
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Cython

Luke Hunsberger Recent Advances in Temporal Networks 46 / 249



Introduction to Cython
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About Cython

“Cython is an optimising static compiler for both the Pythonprogramming language and the extended Cython programminglanguage (based on Pyrex)."
Cython “makes writing C extensions for Python as easy asPython itself."
“Cython gives you the combined power of Python and C."
Documentation, Tutorials, Examples available at cython.org
Cython Tutorial [Behnel et al., 2009]

All quotes from cython.org
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Installing Cython

If you currently have Python version 3.4 or greater:
pip3 install Cython
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Using Cython
Most source code goes into *.pyx files
Function signatures and struct defs can go into *.pxd files
Info about *.pyx files goes into a single setup.py file
To Compile: python3 setup.py build_ext --inplace

Generates *.c and *.so files enabling your modules to beimported into Python
cython -a myfile.pyx

Generates html file showing translation from Cython to C code.
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Using Cython (cont’d.)

To speed up Cython code:
Declare data types especially for arrays and array indices
Use numpy arrays
Use csr_matrix sparse matrices
Use malloc and free to dynamically allocate and free memory
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Getting Cython Code for this Tutorial

All code for this tutorial is available at:

https://www.cs.vassar.edu/~hunsberg/icaps_2023_tutorial_code/

or

https://www.cs.vassar.edu/~hunsberg/icaps_2023_tutorial_code.zip
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Basic Cython Example: Version 1 (Pure Python)
Modified from [Behnel et al., 2009]

# File: test1.pyx -- SOURCE CODE

from math import sin as sin

# INTEGRATE_SIN
# --------------------------------------------------------
# Estimate integral of SIN from A to B using N divisions

def integrate_sin(a, b, N):
s = 0
dx = (b-a)/N
for i in range(N):

s += sin(a+i*dx)
return s * dx
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Basic Cython Example: Version 1 (Pure Python)
Modified from [Behnel et al., 2009]

# File: test1_setup.py -- COMPILATION MANAGER

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules= [ Extension("test1", ["test1.pyx"]) ]

for e in ext_modules:
e.cython_directives = {’language_level’: "3"}

setup( name = ’Test1’ ,
cmdclass = {’build_ext’: build_ext},
ext_modules = ext_modules )
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Basic Cython Example: Version 1 (Pure Python)
Compilation

icaps-2023-repo$ python3 test1_setup.py build_ext --inplace
/Users/hunsberger/Desktop/icaps-2023-repo/test1_setup.py:5: ...
running build_ext
cythoning test1.pyx to test1.c
building ’test1’ extension
clang -Wno-unused-result -Wsign-compare -Wunreachable-code ...
clang -bundle -undefined dynamic_lookup -arch arm64 -arch ...

icaps-2023-repo$ ls test1.*
test1.c test1.pyx test1.cpython-310-darwin.so
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Basic Cython Example: Version 1 (Pure Python)
Importing Module into Python

icaps-2023-repo$ python3
Python 3.10.0 (v3.10.0:b494f5935c, ...
Type "help", "copyright", "credits" ...

>>> import test1

>>> test1.integrate_sin(0, 1.57, 100)
0.9913331512178147

>>> test1.integrate_sin(0, 6.28, 1000)
1.5074917580179498e-05
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Basic Cython Example: Version 1 (Pure Python)
html file generated by: cython -a test1.pyx
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Basic Cython Example: Version 1 (Pure Python)
html file generated by: cython -a test1.pyx
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Basic Cython Example: Version 2
Modified from [Behnel et al., 2009]

# File: test2.pyx -- SOURCE CODE

# Import SIN function from C math library
from libc.math cimport sin

# INTEGRATE_SIN
# ---------------------------------------------------------
# Estimate integral of SIN from A to B using N divisions

def integrate_sin( double a, double b, int N ):

cdef:
int i
double s, dx

s = 0
dx = (b-a)/N
for i in range(N):

s += sin(a+i*dx)
return s * dx
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Basic Cython Example: Version 2
html file generated by: cython -a test2.pyx
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Basic Cython Example: Version 2
html file generated by: cython -a test2.pyx
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Cython Code for STNs
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Representing STNs
First Attempt

An STN graph is a pair (T , E) where:
• T is a set of n time-points: X0,X1, . . . ,Xn−1
• E is a set of m edges, each of the form: Xi

δ Xj

The time-points can be represented by numerical indices:
0, 1, . . . , n − 1

The edges can be represented by a list:
( (Xi1 , δ1,Xj1), (Xi2 , δ2,Xj2), . . . (Xim , δm,Xjm) )

. . . but that doesn’t allow fast access.
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Representing STNs
Second Attempt

The edges in an STN can be represented by an n-by-n array/matrix:
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

. . . but that wastes space if the graph is sparse.
For example, if: m = 10 ≪ 25 = n2.

. . . “no edge" represented by ∞.

. . . diagonal entries contain 0.
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Compressed Sparse Row (CSR) Matrices
0 1 2 3 4

0 0 ∞ ∞ −2 5
1 ∞ 0 −7 ∞ ∞
2 −5 3 0 ∞ 8
3 ∞ 2 9 0 6
4 ∞ −2 ∞ ∞ 0

n = 5 time-points
m = 10 edges

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10
wts and cols are m-vectors (one entry per edge).
indptr is an (n + 1)-vector.
Content of wts and cols for row r starts at index indptr[r]
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Iterating over Edges in a CSR Matrix

0 1 2 3 4 5 6 7 8 9
wts : −2 5 −7 −5 3 8 2 9 6 −2
cols : 3 4 2 0 1 4 1 2 4 1

indptr : 0 2 3 6 9 10

for row in range(n):
for indy in range(indptr[row], indptr[row+1]):

print(f"EDGE: ({row}, {wts[indy]}, {cols[indy]})")
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Compressed Sparse Row (CSR) Matrices
A CSR matrix only represents the edges that are present.
For an n-by-n matrix with m entries, a CSR matrix uses threevectors that, in the literature, are called:

data: an m-vector (we use for weights)
indices: an m-vector (we use for column indices)
indptr: an (n + 1)-vector

For each row r ∈ {0,1, . . . ,n − 1},For each index i ∈ [indptr[r], indptr[r+ 1]],
There is an edge: r

data[i]
indices[i].

Can use csr_matrix from scipy.sparse, but:
Their algorithms assume that implicit entries are 0,whereas we need ∞ in off-diagonal entries.
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Modules in STN Library
File Name Description
min_bin_heaps.pyx Minimum Binary Heaps
fib_heaps.pyx Fibonacci Heaps
bellman_ford.pyx Bellman-Ford Alg.
dist_mat.pyx Distance-matrix Algs.
lifo.pyx Last-in, first-out queues
pred_graphs.pyx Predecessor graphs
tarjan_scc.pyx Tarjan’s SCC Alg.
rigid_components.pyx Compute rigid components
rev_post_order.pyx Reverse post-order
disp_new.pyx Dispatchability Algs.

Only def functions can be imported into Python session.
But cdef functions can be imported/used by other Cython modulesif their signatures are included in the corresponding *.pxd file.
Similarly, cdef Cython structs and enums that are defined in
*.pxd files can be used by other Cython modules.
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Example: min_bin_heaps.pyx/pxd
Implementation of Minimum Binary Heaps

min_bin_heaps.pxd file provides:
Definition for enum State

Definitions for struct Node and struct MinBinHeap

Signatures for Cython functions: init_heap, clear_heap,
free_heap, is_empty, insert_node, decrease_key, get_status,
insert_or_decrease_key, and extract_min_node.

min_bin_heaps.pyx file provides:
Definitions for all of the above (exportable) Cython functions.
Definitions of private Cython functions: swapper, init_node,
print_node, get_status and min_heapify.
Definition of a Python-importable function: test_mbh.

Luke Hunsberger Recent Advances in Temporal Networks 69 / 249



Testing the min_bin_heaps Module

The test_mbh function generates num random numbers, inserts theminto the queue, and then extracts them in order of priority.
>>> mbh.test_mbh(5)
node: tp:1, pri: 5.0 , loc:-1, state:ALREADY_POPPED
node: tp:3, pri: 6.0 , loc:-1, state:ALREADY_POPPED
node: tp:4, pri: 21.0 , loc:-1, state:ALREADY_POPPED
node: tp:0, pri: 22.0 , loc:-1, state:ALREADY_POPPED
node: tp:2, pri: 48.0 , loc:-1, state:ALREADY_POPPED
--- MBH Test Done! ---
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Testing the dist_mat Module
Algorithms for computing the distance matrix

>>> import stn_helpers as sh # See Python file: stn_helpers.py
>>> import dist_mat as dm
>>> gr = sh.gen_rand_csr_matrix(5,12) # Generate random STN with n=5, m=12
>>> sh.show_square_csr_matrix(gr) # Display the STN edges as square matrix
______ ______ 18.00 34.00 ______

-47.00 ______ ______ -20.00 -21.00

______ 64.00 ______ 25.00 10.00

-5.00 ______ -4.00 ______ ______

______ ______ 7.00 3.00 ______

>>> (retval, disty) = dm.fw(5, gr) # Call Floyd-Warshall
>>> disty # Show the distance matrix

array([[ 0., 82., 18. , 31. , 28.],

[ -47. , 0., -29., -20. , -21. ],

[ 8., 64. , 0., 13. , 10. ], 2 10 4 3 3
[ -5. , 60., -4. , 0., 6.],

[ -2., 63., -1. , 3. , 0.]]) 4 3 3 −4 2
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Real-Time Execution
and Dispatchability for STNs
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Motivating Dispatchability
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Motivating Dispatchability

Concern: Solution fixed in advance has no flexibility.
Goal: Preserve flexibility by postponing execution decisions untilneeded in real time—without incurring heavy computational cost.

A dispatchable STN:
• Preserves maximum flexibility
• Supports generating solutions in real time
• Requires only local propagation during execution
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Background: GenSoln
An Algorithm for Generating an STN Solution [Dechter et al., 1991]

Given any consistent STN graph G = (T , E):
1 U := T (currently unexecuted time-points)
2 For each X ∈ T , TW(X ) = [−D(X ,Z),D(Z ,X )] (time windows)
3 Choose: Pick some X ∈ U , and some t ∈ TW(X )

4 Execute: set X := t , and remove X from U

5 Propagate: Update time windows:
For each Y ∈ U : TWY := TWY ∩ [t −D(Y ,X ), t +D(X ,Y )]

Upper: Y −X ≤ D(X ,Y ) =⇒ Y ≤ X +D(X ,Y ) = t +D(X ,Y )Lower: X −Y ≤ D(Y ,X) =⇒ Y ≥ X −D(Y ,X) = t −D(Y ,X)

6 If U non-empty, go back to (3); else done.
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Executing an STN in Real Time
Initial Attempt: Using GenSoln

Z

B

C

D

−5 6 3

−2

−4
30

−2
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Executing an STN in Real Time
Initial Attempt: Using GenSoln

Compute D (equiv., compute APSP graph)

Z

B

C

D

26
−5

28

30
−9

6 3
25

−2

−4

28
−2

Time Windows: Z ∈ [0,0], B ∈ [5,26], C ∈ [2,28], D ∈ [9,30]
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Executing an STN in Real Time
Initial Attempt: Using GenSoln

Arbitrarily choose D = 20 ∈ [9,30]; then update D:

Z

B

C

D

16
−5

18

20
−20

6 3
15

−2

−4

18
−2

Updated Time Windows: B ∈ [5,16], C ∈ [2,18]Whoops! Can’t go back in time to execute B ≤ 16 or C ≤ 18!
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Executing an STN in Real Time
Initial attempt: Using GenSoln

GenSoln is great for finding solutions for consistent STNs—in advance.

GenSoln is not reliable for real-time exeuction.
⇒ Can’t go backward in time!

Also: Updating D after each variable assignment is expensive.
Another lesson: Shouldn’t execute a time-point like D until all ofits outgoing negative edges point at already-executed time-
points (i.e., until D is enabled).
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Real-Time Execution (RTE) Algorithm
[Muscettola et al., 1998b]

Goal: Preserve flexibility while requiring minimal computation.
0 For each X ∈ T , TW(X ) = [0,∞) (time windows)
1 t := 0 (curr. time); U := T (unexecuted); E := {Z} (enabled)
2 Choose: Remove any X ∈ E such that t is in X ’s time window;
3 Execute: set X := t , and remove X from U ;
4 Propagate: propagate X = t to X ’s immediate neighbors;
5 Update: update E to include all Y ∈ U for which no negativeedges emanating from Y have a destination in U ;
6 Wait: wait until t has advanced to some time between

min{lb(W ) | W ∈ E} and min{ub(W ) | W ∈ E};
7 If U non-empty, go back to (2); else done.
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Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)
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Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)

Z

B

C

D

−5 6 3

−2

−4
30

−2

−5
30

−2

After executing Z := 0, E = {B,C} and
TW(B) = [5,∞), TW(C) = [2,∞), TW(D) = [0,30]
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Executing an STN in Real Time
Second Attempt: Using RTE Algorithm

Initially, E = {Z} and t = 0 ∈ TW(Z) = [0,∞)

Z

B

C

D

−5 6 3

−2

−4
30

−2

−5
30

−2

After executing Z := 0, E = {B,C} and
TW(B) = [5,∞), TW(C) = [2,∞), TW(D) = [0,30]

So, according to RTE, can wait until t = 100, then choose B := 100
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Dispatchable STN
Definition [Muscettola et al., 1998b]

An STN S is dispatchable if the RTE Algorithmnecessarily successfully executes S in real time.
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Dispatchable STN
Definition [Muscettola et al., 1998b]

An STN S is dispatchable if the RTE Algorithmnecessarily successfully executes S in real time.

(The graph in the preceding example was not dispatchable!)
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Equivalent Characterization of Dispatchability
[Morris, 2016]

Morris found a graphical characterization of dispatchability interms of vee-paths.
A vee-path consists of zero or more negative edges followed byzero or more non-negative edges.
Theorem: An STN is dispatchable iff for every X ,Y ∈ T , if thereis a path from X to Y in G, then there is a shortest path from X to
Y that is a vee-path.

X

A

B

C

D

E

−7
−3 1

2
4
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Dispatchability Algorithms for STNs

The APSP graph is always dispatchable, but has O(n2) edges.
Dispatchability algorithms determine which edges from the APSPgraph are needed to ensure dispatchability.
• O(n3)-time edge-filtering algorithm [Muscettola et al., 1998b]Start with APSP graph, then remove dominated edges.
• O(mn + n2 log n)-time algorithm [Tsamardinos et al., 1998]Accumulate undominated edges without building APSP graph.
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Filtering Algorithm for STN Dispatchability
[Muscettola et al., 1998b]
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Dominated Edges – Part 1
Dominated Negative Edges

A negative edge AC is dominated by a negative edge ABif D(A,B) +D(B,C) = D(A,B):

A

B

C

−8 2

−6
AB and AC have the same source node: A.
During execution, it is not necessary to propagate (backward)along dominated negative edges (e.g., AC).
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Dominated Edges – Part 2
Dominated Non-Negative Edges

A non-negative edge AC is dominated by a non-negative edge BCif D(A,B) +D(B,C) = D(A,B):

A

B

C

2 9

11
BC and AC have the same destination node: C.
During execution, it is not necessary to propagate (forward) alongdominated non-negative edges (e.g., AC).

Luke Hunsberger Recent Advances in Temporal Networks 87 / 249



Edge-Filtering Algorithm
Example

Start with Distance Matrix
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Edge-Filtering Algorithm
Example

Remove “dominated” edges:
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Running the RTE Alg. on the Dispatchable STN
Initially: t = 0, X = {}, E = {Z}.

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

Remove Z from E. Set Z = 0. Add Z to X .
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Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate Z = 0 to neighbors;

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

X = {Z}, E = {B,C}; B ∈ [5, 26],C ∈ [2, 28],D ∈ [0, 30].
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Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z}, E = {B,C}; Bounds: B ∈ [5,26], C ∈ [2,28].

Z

B

C

D

26
−5

28
−2

30
63 −4

−2

Let t advance to 12; Pick B from E; Set B = 12.
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Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate B = 12 to neighbors

Z

B

C

D

12
−12

28
−2

30
63 −4

−2

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]
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Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]

Z

B

C

D

12
−12

28
−2

30
63 −4

−2

Let t advance to 16, pick C from E, set C = 16.
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Running the RTE Alg. on the Dispatchable STN (ctd.)
Propagate C = 16 to C ’s only remaining neighbor, D.

Z

B

C

D

12
−12

16
−16

30
63 −4

−2

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]
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Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]

Z

B

C

D

12
−12

16
−16

30
63 −4

−2

Let t advance to 25, pick D from E, set D = 25.
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Running the RTE Alg. on the Dispatchable STN (ctd.)
X = {Z,B,C,D}, t = 25, E = {}

Z

B

C

D

12
−12

16
−16

25
−25

63 −4

−2

Solution: Z = 0,B = 12,C = 16,D = 25.
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Running the RTE Alg. on the Dispatchable STN (ctd.)
Easy to check that Z = 0,C = 20,B = 23,D = 28 can also begenerated by the RTE algorithm.

Z
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C

D

26
−5

28
−2

30
63 −4

−2
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More Efficient STN Dispatchability Algorithm
[Tsamardinos et al., 1998]
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More Efficient Dispatchability Algorithm for STNs
[Tsamardinos et al., 1998]

Given any STN graph G:
First, find and collapse any rigid components in G.
Second, for each X ∈ T , accumulate undominated edges by:

Constructing predecessor graph PX rooted at X
Exploring PX in reverse post-order— while keeping track of certain information.

Return all accumulated undominated edges.
⇒ Does not require constructing APSP (equiv., computing D)
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Collapsing Rigid Components
X and Y are rigidly connected iff D(X ,Y ) +D(Y ,X ) = 0.
Example: X Y

7
−7 (i.e., Y = X + 7)

All time-points along a cycle of length 0 are rigidly connected.
Being rigidly connected is an equivalence relation.
A rigid component (RC) contains all of the time-points that arerigidly connected to one another.
Any time-point in an RC can serve as a representative for the RC.
Edges incident to time-points in an RC can be redirected to theRC’s representative time-point.
Afterward, each RC can effectively be collapsed to itsrepresentative (while preserving the offset information to othertime-points in the RC).
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Collapsing Rigid Components
Example
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Finding Rigid Components

Given any consistent STN graph G, with solution f :
Construct predecessor graph PZ , using Z as source node.

PZ contains all edges in G lying on shortest paths from Z.
PZ can be constructed using Dijkstra, with f as a potential functionto re-weight edges to be non-negative.

Rigid components in G correspond to strongly connectedcomponents (SCCs) in PZ . (Cycles in PZ must have length 0.)
Use Tarjan’s SCC algorithm to detect SCCs in PZ .
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Accumulating Undominated Edges
Without Computing the Distance Matrix

For each X ∈ T :
Compute pred graph PX with X as source, generating distancefunction d(Y ) = distance from X to Y for each Y ∈ T .
Explore PX in reverse post-order, along the way updating thefollowing information for each Y ∈ T :

Seen an ancestor W of Y in PX with d(W ) < 0?
min{d(W ) | W is anc of Y}.

When processing Y :
If d(Y ) < 0 and have not seen an ancestor W of Y with d(W ) < 0,then accumulate (undominated) edge (X , d(Y ),Y ).
If d(Y ) ≥ 0 and min{d(W ) | W is anc of Y} > d(Y ), thenaccumulate (undominated) edge (X , d(Y ),Y ).
In either case, for each outgoing edge (Y , δ,V ) in PX , update infofor V regarding its ancestor Y .
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Accumulating Undominated Edges
Example: Exploring predecessor graph PZ in rev. post-order: �ZZ ,D ,B,C
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(d(D) = 30)

hasNegAnc minAncDistCurr. TP Accum. Edges Z B C D Z B C D– – – No No No – ∞ ∞ ∞
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Accumulating Undominated Edges
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Accumulation of Undominated Edges
Example: Total Accumulated Edges
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Book on STNs — Coming soon!
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Simple Temporal Networks
with Uncertainty (STNUs)
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Simple Temporal Networks with Uncertainty
Motivation

You may control when an action starts, but not how long it lasts:— taxi ride, bus ride, baseball game, medical procedure.
Although their durations may be uncertain, they are often withinknown bounds.
Such actions can be represented by contingent links in atemporal network . . .
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STN with Uncertainty (STNU)
Definition [Morris et al., 2001]

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressiveAn STNU is a triple,
S = (T , C,L), where:

(T , C) is an STN
L is a set of contingent links, each of the form (A, x, y ,C):

A is the activation time-point.
C is the contingent time-point.
Duration bounded: C − A ∈ [x, y ] but uncontrollable

Notation: n = |T |, m = |C|, k = |L|.
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STNU Graph
[Morris and Muscettola, 2005]

Each STNU has a graphical form where:
Nodes and "ordinary" edges as in an STN graph
Y − X ∈ [3,7] ⇐⇒ X Y

7
−3

Contingent Links ⇐⇒ Labeled Edges
(A,3,7,C) ⇐⇒ A C

c:3
C:− 7

The lower-case (LC) edge, A c:3 C, represents theuncontrollable possibility that C − A might equal 3.
The upper-case (UC) edge, A C:− 7 C, represents theuncontrollable possibility that C − A might equal 7.
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Sample STNU Graph

X C1

A1 A2

C2

c 1:1
C 1:−

3 c 2:1
C 2:−

10

11
−7

8
−1

Contingent links: C1 − A1 ∈ [1,3] and C2 − A2 ∈ [1,10]
Agent only controls execution of A1,A2 and X .
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STNU Notation
[Hunsberger, 2015b]

For a given STNU graph G:
LO edges: the lower-case or ordinary edges
OU edges: the ordinary or upper-case edges
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STNU Notation
[Hunsberger, 2015b]

For a given STNU graph G:
LO edges: the lower-case or ordinary edges
OU edges: the ordinary or upper-case edges
LO graph: STNU graph comprising the LO edges
OU graph: STNU graph comprising the OU edges

Ignoring any alphabetic labels, the LO graph and OU graphs may beviewed as STNs.
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Dynamic Controllability (DC)
[Morris et al., 2001] [Hunsberger, 2009]

An STNU is dynamically controllable (DC) if:
there exists a dynamic strategy . . .
for executing the non-contingent time-points . . .
such that all of the constraints will be satisfied . . .
no matter how the contingent durations turn out.

A dynamic strategy can react to contingent executions.
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STN with Uncertainty
STNU Example #1

0 = A C

B

c:2
C:− 9

5
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5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
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5
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STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4—unless C executes early (e.g., at time 2).In that case, B could then execute immediately.
• Conclusion: To ensure that C − B ≤ 5 is satisfied:As long as C unexecuted, B must wait until time 4.
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STN with Uncertainty
STNU Example #1

0 = A C

B
C − B ≤ 5 (i.e., B ≥ C − 5)

c:2
C:− 9

5C:− 4

• If C executes at time 9, then B ≥ C − 5 iff B ≥ 4.
• Strategy cannot know in advance when C will execute,so B must wait until time 4—unless C executes early (e.g., at time 2).In that case, B could then execute immediately.
• Conclusion: To ensure that C − B ≤ 5 is satisfied:As long as C unexecuted, B must wait until time 4.
• A C:− 4 B is an example of a wait constraint.
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STN with Uncertainty
STNU Example #2

0 = A C

B

c:2
C:− 9

−1
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STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−1

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.
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STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−11

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.
• Strategy cannot know in advance whether C will execute early,so B must execute before time 1.
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STN with Uncertainty
STNU Example #2

0 = A C

B
B − C ≤ −1 (i.e., B ≤ C − 1)

c:2
C:− 9

−11

• If C executes at time 2, then B ≤ C − 1 iff B ≤ 1.
• Strategy cannot know in advance whether C will execute early,so B must execute before time 1. No exceptions!
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Computational Problems associated with STNUs

DC Checking: How to check whether an STNU is DC?
Dispatchability: How to efficiently execute an STNU in real time?
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DC-Checking Algorithms for STNUs

Luke Hunsberger Recent Advances in Temporal Networks 121 / 249



Recent Approaches to DC-Checking for STNUs
Based on constraint-propagation/edge-generation rules
Focus on reducing away/bypassing “problem" edges
Some use potential functions (as in Johnson’s algorithm) to guideexploration of shortest paths in related STN graphs.
Authors Morris [2006] Morris [2014] Cairo et al. [2018]

Problem Edges LC edges Neg. OU edges UC edges
Prop. Along OU edges LO edges LO edges
Prop. Rules MM05∗ MM05∗ RUL−

Prop. Dir’n. Fwd Bkwd Bkwd
Pot. Func.? Yes No Yes
Complexity O(n4) O(n3) O(mn + k2n + kn log n)

∗ [Morris and Muscettola, 2005]
Luke Hunsberger Recent Advances in Temporal Networks 122 / 249



The MM05 Propagation Rules
[Morris and Muscettola, 2005]

Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x
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The RUL− Propagation Rules
[Cairo et al., 2018]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U− P C A
v C:− y

max{v − y ,−x}
(A, x, y ,C) ∈ L
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Morris’ O(n4)-time DC-Checking Algorithm
[Morris, 2006]

Starting from LC edges, propagate forward along OU edges,using MM05 rules, aiming to generate bypass edges.

A

C

C ′ A′ U V

c:1
15

C′:− 7 3 −18

(UC,LR) 8
(NC) 11

(NC) −7
(LC) −6

A

C

C ′ A′ C ′′ A′′

c:1
15

C′:− 7 3 C′′:− 18

(UC,LR) 8
(NC) 11

(NC) −7

(CC) C′′ :− 6
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Morris’ O(n3)-time DC-Checking Algorithm
[Morris, 2014]

Starting from negative OU edges, propagate backward along non-negative LOedges, also using MM05 rules, aiming to generate OU bypass edges.

U A′ C′ V

W

14 c′:3 2
−15

(NC) −13(LC) −10(NC) 4

U A′ C′ C

A

14 c′:3 2
C:− 15(UC) C:− 13(CC) C:− 10(UC, LR) CX :4

Same idea applies to multiple negative edges incoming to a single node.
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The RUL− DC-Checking Algorithm
An O(mn + k2n + kn log n)-time algorithm, [Cairo et al., 2018]

Starting from UC edges, propagate backward along LO edges, usingthe RUL− rules, aiming to generate ordinary bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R− ) 4(L− ) 6(R− ) 3(R− ) 14

(U−
nlp ) −8(U −

nlp ) −8(U −
nlp ) −8(U −

lp ) −6
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Morris’ 2006 O(n4)-time DC-checking algorithm
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Morris’ O(n4)-time DC-Checking Algorithm
Overview

Focus: Generate OU edges that bypass LC edges.
From each LC edge, A c:x C, propagate forward along OUedges, looking for opportunities to generate new OU edges thatbypass the LC edge.

To guide exploration of shortest paths in the OU graph, use apotential function generated by Bellman-Ford.
If all of the LC edges in a given path P can be bypassed by OUedges, then P is called semi-reducible.
Input STNU is DC iff no semi-reducible negative cycles.
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The MM05 Propagation Rules
[Morris and Muscettola, 2005]

Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x
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The MM05 Propagation Rules
The No-Case (NC) Rule

Q S T3 4

7
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The MM05 Propagation Rules
The No-Case (NC) Rule

Q S T3 4

7
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The MM05 Propagation Rules
The Upper-Case (UC) Rule

Q C A3 C:− 10

C:− 7
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The MM05 Propagation Rules
The Upper-Case (UC) Rule

Q C A3 C:− 10

C:− 7

The generated edge is a wait constraint:
As long as C remains unexecuted, B must wait until 7 after A.
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The MM05 Propgation Rules
The Lower-Case (LC) Rule

A C X
c:3 -5

-2

(Applies since −5 < 0)
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The MM05 Propgation Rules
The Lower-Case (LC) Rule

A C X
c:3 -5

-2

(Applies since −5 < 0)
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The MM05 Propagation Rules
The Cross-Case (CC) Rule

A C AD
c:3 D :− 8

D :− 5

(Applies since −8 < 0 and C ̸≡ D)
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The MM05 Propagation Rules
The Cross-Case (CC) Rule

A C AD
c:3 D :− 8

D :− 5

(Applies since −8 < 0 and C ̸≡ D)
Originally: C must wait until 8 after AD unless D executes early.
But: C is contingent! Therefore, to ensure that C “waits”:
Generated: A must wait until 5 after AD unless D executes early.
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The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
C:− 1 c:3

−1
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The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
C:− 1 c:3

−1

(Applies since −1 ≥ −3)
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The MM05 Propagation Rules
The Label-Removal (LR) Rule

X A C
c:3C:− 1

−1

X must wait at least 1 after A unless C executes early.
— But C cannot execute before time 1!

So X must wait no matter what!
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The MM05 Propgation Rules
Important Property

All of the MM05 edge-generation rules are length preserving!
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Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

1

3

d:3 −3
e:2

C
:− 4
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Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

1

3

d:3 −3
e:2

C
:− 4

(LC) 0
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Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2
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Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2

The original path from X to Y is semi-reducible.
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Morris’ O(n4)-time DC-checking Algorithm
Sample Semi-Reducible Paths [Morris, 2006]

A path is semi-reducible if it can be transformed into a path with no
lower-case edges.

X

AD

D

AE E

A

Y

d:3 −3
e:2

C
:− 4

(LC) 01

3

(CC) C:− 2
−3

With edge from Y to X , it becomesa semi-reducible negative (SRN) cycle!
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Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.
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A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(UC) C2:2
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Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.
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Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.
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A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8

Key idea: Propagate forward along OU paths emanating from C
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A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8
(NC) −7
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Morris’ 2006 O(n4) DC-Checking Algorithm
Based on “canonical reduction” of semi-reducible paths

A

C

C2

A2

A3 C3

Y

c:3

8 C2 :− 6

−1
c3:1

−9

(LR) 2
(NC) 1

(LC) −8
(NC) −7

(LC) −4

Key idea: Propagate forward along OU paths emanating from C
attempting to “reduce away” the lower-case edge A c:3 C.
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Morris’ 2006 O(n4) DC-Checking Algorithm

for i = 1 to k,

Run Bellman-Ford on OU graph to get potential function
for each contingent link (A, x, y ,C),

Do Dijkstra-like propagation using C as source,following paths in the re-weighted OU graph.
Insert all new edges from this round.

Run Bellman-Ford on OU graph to verify consistency.
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12
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Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC) C2 :5
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

(NC) −1
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LR) 5

(LC) −6

(NC) −1
(LC) 0
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Morris’ 2006 O(n4) DC-Checking Algorithm
Finding a Semi-Reducible Negative Loop
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Negative cycle in OU graph! Therefore, STNU not DC.(All edges in OU graph must be satisfied in AllMax projection.)
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Nesting of edge generation implies that the order in whichLC edges are processed matters!
If A2C2 is processed first, then need two rounds;If A1C1 is processed first, then need only one round.If heuristic guesses good nesting order, O(n4) → O(n3).

[Hunsberger, 2013]
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Morris’ 2014 O(n3) DC-checking algorithm
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Morris’ 2014 O(n3) DC-checking algorithm
Key insights

When the 2006 algorithm propagates forward along paths in theOU graph, nesting of edge generation can cause problems— unless you process LC edges in a “good” order.
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Morris’ 2014 O(n3) DC-checking algorithm
Overview

Morris’ 2014 algorithm uses the same edge-generation rules asthe 2006 algorithm, but:
starts from negative OU edges
propagates backward along non-neg. LO edges, absorbing them
looks for opportunities to bypass negative OU edges withnon-negative OU edges.
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Overview

Morris’ 2014 algorithm uses the same edge-generation rules asthe 2006 algorithm, but:
starts from negative OU edges
propagates backward along non-neg. LO edges, absorbing them
looks for opportunities to bypass negative OU edges withnon-negative OU edges.

Propagating backward automatically resolves the nesting issue!
Since back-propagation is only done along non-negative LOedges, don’t need for a potential function!
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12
Starting from a negative edge . . .

Propagate backward along non-negative edges . . .
If path-length goes non-negative,generate a non-negative bypass edge.

If ever encounter another negative edge. . .
Recursively process the interrupting edge.
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Morris’ O(n3)-time DC-Checking Algorithm
Pseudocode

for each negative node X:
if (DCbackprop(X) = false) return false

else return true
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Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – Detect Negative Cycle or Redundant Call

DCbackprop(source)
if ancestor call with same source: return false;

if prior terminated call with source: return true;

distance(source) = 0;
for each node x other than source: distance(x) = infinity;
PriorityQueue queue = empty;
for each Edge(n,wt,source) in InEdges(source) do

distance(n) = wt;
insert n into queue;

while queue not empty:

... body of while loop ...

return true;
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Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – Initialize Priority Queue

DCbackprop(source)
if ancestor call with same source: return false;
if prior terminated call with source: return true;

distance(source) = 0;

for each node x other than source: distance(x) = infinity;

PriorityQueue queue = empty;

for each Edge(n,wt,source) in InEdges(source) do

distance(n) = wt;

insert n into queue;

while queue not empty:

... body of while loop ...

return true;
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Morris’ 2014 O(n3) DC-checking Algorithm
Pseudocode – The Main Loop

DCbackprop(source)
... detect neg cycle or redundant call ...
... init priority queue ...

while queue not empty:
pop Node u from queue;
if distance(u) >= 0:

add Edge(u,distance(u),source) to graph; // Bypass Edge!
else:

if (u is negative node):
if (DCbackprop(u) = false): return false; // Recursive Call!

for each e = Edge(n,wt,u) in InEdges(u):
if (wt >= 0) and (e is suitable):

if distance(u) + wt < distance(v) // One-step back-prop along
distance(v) = distance(u) + wt; // non-negative edges
insert v into queue;

return true;
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The RUL− DC-checking Algorithm
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Recall the MM05 Propagation Rules
Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)

Lower Case (LC) A C U
c:x w

x + w
w < 0

Cross Case (CC) A C A2
c:x C2:w

C2:x + w
C2 ̸≡ C, w < 0

Label Removal (LR) X A C
C:w c:x

w
w ≥ −x

Luke Hunsberger Recent Advances in Temporal Networks 150 / 249



Recall the MM05 Propagation Rules
Rule Graphical Representation Applicability Conditions

No Case (NC) X Y W
v w

v + w
(none)

Upper Case (UC) X Y A
v C:− w

C:v − w
(none)
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Label Removal (LR) X A C
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w
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All of these rules are length preserving!
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General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)
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General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)

Example: V A C
C:− 8 c:3
−3

−8 < −3 (eqiuv., 8 > 3)

Given: While C unexecuted, V must wait at least 8 after A.
But C cannot execute sooner than 3 after A.
Therefore, in every situation, V must wait at least 3 after A.

Luke Hunsberger Recent Advances in Temporal Networks 151 / 249



General Unordered Reduction (GUR) Rule
From [Morris et al., 2001]

Graphical Representation Applicability Condition

In General: V A C
C:w c:x

−x
w < −x (eqiuv., −w > x)

Example: V A C
C:− 8 c:3
−3

−8 < −3 (eqiuv., 8 > 3)

Given: While C unexecuted, V must wait at least 8 after A.
But C cannot execute sooner than 3 after A.
Therefore, in every situation, V must wait at least 3 after A.

The GUR rule is not length-preserving.
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The RUL− Propagation Rules
[Cairo et al., 2018]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U− P C A
v C:− y

max{v − y ,−x}
(A, x, y ,C) ∈ L

R− ≈ NC, L− ≈ LC, U− ≈ (UC + LR + GUR).
RUL− rules only generate ordinary edges.
RUL− rules never generate wait edges, so no need for CC rule.
Propagations always involve 1-2 contingent time-points (k < n).
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The RUL− Propagation Rules — Take 2
[Hunsberger and Posenato, 2022]

Rule Graphical representation Applicability Conditions

R− P Q C
v w

v + w
(A, x, y ,C) ∈ L, w < y − x, Q ∈ TX

L− A′ C ′ C
c′ : x′ w

x + w
(A, x, y ,C) ∈ L, w < y − x, C ′ ̸≡ C

U−
lp

P C A
v C:− y

v − y
(A, x, y ,C) ∈ L, v − y ≥ −x

U−
nlp

P C A
v C:− y

−x
(A, x, y ,C) ∈ L, v − y < −x

Only the U−
nlprule is not length preserving.
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The RUL− DC-Checking Algorithm
An O(mn + k2n + kn log n)-time algorithm, [Cairo et al., 2018]

Starting from UC edges, propagate backward along LO edges, usingthe RUL− rules, aiming to generate ordinary bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R− ) 4(L− ) 6(R− ) 3(R− ) 14

(U−
nlp ) −8(U −

nlp ) −8(U −
nlp ) −8(U −

lp ) −6
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The RUL− DC-Checking Algorithm
Processing a UC edge, C C:− y A

Phase 1:
(a) Back-prop from C along LO edges.
(b) Use L− and R− to generate new edges terminating at C.

AC

•••

•
•

•

•
••

(a) Back-prop from C

AC

•••

•
•

•

•
••

(b) Generate new edges terminating at C

Phase 2: For each new edge XC generated during Phase 1, apply
U−

lpor U−
nlpto XC and CA to generate ordinary bypass edge.

AC

•••

•
•

•

•
••
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RUL− DC-Checking Algorithm
Overview (continued)

AC

•••

•
•

•

•
••

(a) Back-prop from C

AC

•••

•
•

•

•
••

(b) New edges terminating at C

AC

•••

•
•

•

•
••

(c) Generate bypass edges
Backward propagation along LO edges in Phase 1 guided byDijkstra, using a potential function to re-weight the LO graph.
After inserting new bypasses edges in Phase 2, incrementallyupdate the potential function.
If Phase 1 back-prop from C encounters another UC edge C ′A′

that has not yet been processed, then interrupt Phase 1back-prop from C, and instead process C ′A′.
Re-start Phase 1 back-prop from C only after all interrupting UCedges have been processed.
Push-down stacks used to ensure that each UC edge processedat most twice; and to detect negative cycles of interruptions.
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RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12
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Phase 1: Back-prop from C1 using L− and R−.No new edges since 12 ≥ 2 = y − x and 8 ≥ 2 = y − x.
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Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.
Interrupting UC edge: C1 C1:− 3 A1.

Phase 1: Back-prop from C1 using L− and R−.No new edges since 12 ≥ 2 = y − x and 8 ≥ 2 = y − x.Phase 2: Generate bypass edges using U−.
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RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp ) 5

(L− ) 0

(U −
lp ) 9

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249



RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp ) 5

(L− ) 0

(U −
lp ) 9

(R−) 9

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249



RUL− DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1 C 2:−

10 c2 :1
8

C1 :− 3 c 1:1

−7

12

(U −
lp ) 5

(L− ) 0

(U −
lp ) 9

(R−) 9

(U −
lp ) −1

Process UC edge, C2 C2:− 10 A2.
Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

lp.

Luke Hunsberger Recent Advances in Temporal Networks 157 / 249
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Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

lp.Negative cycle detected when incrementally updating potentialfunction on LO edges.
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RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle
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Phase 1: Back-prop from C1 using L− and R−.No new edges since 11 ≥ 2 = y − x and 8 ≥ 2 = y − x.
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RUL− DC-checking algorithm
Finding a Slightly Different Negative Cycle
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Phase 1: Back-prop from C2 using L− and R−.Phase 2: Generate bypass edge using U−

nlpOther such edges not shown.Negative cycle in LO graph (found when trying to update potentialfunction over LO edges).
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RUL− DC-checking Algorithm
Summary

Complexity: O(mn + k2n + kn log n) time
Faster than Morris’ 2014 O(n3) algorithm on sparse graphs(e.g., in cases where Morris’ algorithm generates O(n2) edges).
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The RUL2021 Algorithm
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The RUL2021 DC-Checking Algorithm
[Hunsberger and Posenato, 2022]

Combines techniques from prior algorithms with novel ideas.Like RUL−:
Back-propagates from upper-case edgesUses potential function to enable DijkstraUses the length-preserving rules from RUL−

Unlike RUL−:
Does not use non-length-preserving U−

nlpruleInserts dramatically fewer edgesUses some forward propagation (like Morris06), but only to detectcertain (rarely encountered) negative cyclesImplemented recursively (like Morris14)Deals more efficiently with interruptions
Same worst-case O(mn + k2n + kn log n) time as RUL−

— but an order of magnitude faster in practice!
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RUL2021 Algorithm: O(mn + k2n + kn log n) time
Propagate backward from upper-case edges, using RUL− rules(but not U−

nlp), aiming to generate bypass edges.

A

(Assuming (A, 8, 20,C) ∈ L)

CXC2A2WT
C:−2013c2:2−311 (R) 4(L) 6(R) 3(R) 14

(U−
nlp ) −8(U −

nlp ) −8(U −
nlp ) −8(U −

lp ) −6

Computes—but does not insert!—dotted edges
Does not compute or insert gray dashed edges
Only inserts blue bypass edges.
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RUL2021 DC-checking algorithm
Finding the Slightly Different Negative Cycle
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Phase 1: Back-prop from C2 using L− and R−.Phase 1 (again): Back-prop from C2 using L− and R−.Found C2 to C2 cycle of length 7 < ∆2 = 10 − 1 = 9!Must propagate forward!
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Phase 1: Back-prop from C2 using L− and R−.Forward propagation from C2 along LO edgesFound negative length path from C2 to X !— Indicates negative cycle in OU graph!
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Empirical Evaluation
Execution Time vs. Number of Nodes, n
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Empirical Evaluation
Number of Added Edges (as multiple of m) vs. Number of Nodes, n
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Related Work

Magic Loops: Worst-case indivisible semi-reducible negativecycles with applications to DC-Checking for STNUs
[Hunsberger, 2013, 2014a,b, 2015a]

Using Timed Game Automata (TGAs) to synthesize executionstrategies for STNUs
[Cimatti et al., 2014b]

Semantics for STNUs and real-time execution decisions
[Hunsberger, 2009]
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Dispatchability for STNUs
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Motivating Dispatchability for STNUs
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Recall RTE Algorithm for STNs
[Muscettola et al., 1998b]

Goal: Preserve flexibility while requiring minimal computation.
0 For each X ∈ T , TW(X ) = [0,∞) (time windows)
1 t := 0 (curr. time); U := T (unexecuted); E := {Z} (enabled)
2 Choose: Remove any X ∈ E such that t is in X ’s time window;
3 Execute: set X := t , and remove X from U ;
4 Propagate: propagate X = t to X ’s immediate neighbors;
5 Update: update E to include all Y ∈ U for which no negativeedges emanating from Y have a destination in U ;
6 Wait: wait until t has advanced to some time between

min{lb(W ) | W ∈ E} and min{ub(W ) | W ∈ E};
7 If U non-empty, go back to (2); else done.
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RTE Algorithm for STNUs
Must incorporate WAIT constraints

• Initialize data (e.g., time windows, enabled TPs, etc.)
• While some TPs not yet executed:

⋆ Generate real-time execution decision (RTED)
⋆ Observe outcome: some TP executed
⋆ Update data

RTED: Hunsberger [2009]
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RTE Algorithm for STNUs
Initialize Data

Given STNU graph: ((Tx ∪ Tc), Eo, Elc, Euc, Eucg):
• For each X ∈ Tx :

⋆ TW(X ) = [lb(X ), ub(X )] = (− inf, inf) (Time Windows)
⋆ ActWaits(X ) = ∅ (Activated Waits)

• Ux = Tx (Unexecuted Executable TPs)
• Uc = Tc (Unexecuted Contingent TPs)
• EnabledTPs = {Z} (Enabled Executable TPs)
• now = 0 (Current time)
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RTE Algorithm for STNUs
Activated Wait Constraints

• Suppose there is a UC edge: X C:− 9 A.
• This represents a wait constraint:

While C unexecuted, X must wait at least 9 after A.
• If A not yet executed, then X cannot be enabled.
• If A executed (say, A = 5), then the wait is activated:

While C unexecuted, X must wait until time 14.
ActWaits(X ) = {(14,C)} (Activated Wait)

• If C executes before time 14, the wait disappears:
ActWaits(X ) = ∅
Perhaps X can now be enabled . . .

• Multiple activated waits:
ActWaits(X ) = {(14,C), (18,C2), (21,C5)}
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RTE Algorithm for STNUs
Enabled Time-Points

An executable time-point X is not enabled for execution if:
• There is a negative edge from X to some unexecuted TP Y ; or
• X has one or more unactivated waits; or
• X has one or more activated waits.
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RTE Algorithm for STNUs
Compute Next Real-Time Execution Decision, RTED [Hunsberger, 2009]

• If EnabledTPs = ∅ then RTED = Wait

• For each X ∈ EnabledTPs:
• lbw(X ) = max{w | ∃(w ,C) ∈ ActWaits(X )} (Max wait for X )
• glb(X ) = max{lb(X ), lbw(X )} (Overall lower bound for X )

• tL = min{glb(X ) | X ∈ EnabledTPs} (Soonest next execution)
• t∗L = max{now, tL} (After now!)
• tU = min{ub(X ) | X ∈ EnabledTPs} (Latest next execution)
• possWin = [t∗L , tU ] (Range for next execution)
• t = pick any time from possWin

• X = any TP from EnabledTPs for which t ∈ [glb(X ), ub(X )]

• RTED = (t ,X ) (“If nothing happens before time t , set X = t”)
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RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 1: A contingent TP C executed at some ρ <= t .
⋆ Delete all waits labeled by C from relevant ActWaits sets
⋆ Update time-windows for neighboring TPs (as for STNs)
⋆ Update EnabledTPs (because of any deleted waits or incomingnegative edges to C)
⋆ now = ρ
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RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 2: Nothing happened before time t .
⋆ Execute X at time t
⋆ Update time-windows for neighboring TPs (as for STNs)
⋆ If X is an activation TP:

Then for each UC edge Y C:− w X
insert (t + w ,C) into ActWaits(Y ).

⋆ Update EnabledTPs (due to any incoming neg edges to X )
⋆ now = t
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RTE Algorithm for STNUs
Observe Outcome and Update Info

Case 3: A contingent time-point Cand an executable time-point X both execute at time t .
⋆ Combine updates from Cases 2 and 3.
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RTE Algorithm for STNUs
Example 1

X C Z

Y A
−6

−7
C:

−
10

c:1C:− 11

C:− 10

1
1

−2

3
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RTE Algorithm for STNUs
Example 1

X C Z

Y A
−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Initialization:
• Ux = {Z ,A,X ,Y}, EnabledTPs = {Z}, now = 0.
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Compute RTED
• Ux = {Z ,A,X ,Y}, EnabledTPs = {Z}, now = 0.
• possWin = [0, inf)
• RTED = (0,Z)
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Observe outcome
• Nothing happens before time 0
• So execute Z at time 0

Executions: Z = 0
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 1: Update info
• Update EnabledTPs: EnabledTPs = {A}

Executions: Z = 0
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Compute RTED
• Ux = {A,X ,Y}, EnabledTPs = {A}, now = 0.
• TW(A) = [6, inf), possWin = [6, inf), RTED = (9,A)

Executions: Z = 0
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Observe outcome
• Nothing happens before time 9
• So execute A at time 9

Executions: Z = 0 , A = 9
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 2: Update info
• Update time-windows: —
• ActWaits(X ) = {(20,C)}, ActWaits(Y ) = {(19,C)}

• Ux = {X ,Y}, EnabledTPs = ∅, now = 9.

Executions: Z = 0 , A = 9
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Compute RTED
• Ux = {X ,Y}, EnabledTPs = ∅, now = 9.
• Since EnabledTPs = ∅, RTED = Wait

Executions: Z = 0 , A = 9
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249



RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Observe outcome
• Observe C executing at time 15.

Executions: Z = 0 , A = 9 , C = 15
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 3: Update info
• Update time-windows: TW(Y ) = (− inf, 16], TW(X ) = (− inf, 18]
• Delete waits: ActWaits(X ) = ∅, ActWaits(Y ) = ∅

• Ux = {X ,Y}, EnabledTPs = {Y}, now = 15

Executions: Z = 0 , A = 9 , C = 15
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Compute RTED
• EnabledTPs = {Y}, TW(Y ) = (− inf,16], now = 15
• possWin = [15,16], RTED = (16,Y )

Executions: Z = 0 , A = 9 , C = 15
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Observe outcome
• EnabledTPs = {Y}, TW(Y ) = (− inf,16], now = 15
• possWin = [15,16], RTED = (16,Y )

• Execute Y at time 16

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 4: Update info
• EnabledTPs = {X}, TW(X ) = [16,18], now = 16

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 5: Compute RTED
• RTED = (17,X )

Executions: Z = 0 , A = 9 , C = 15 , Y = 16
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RTE Algorithm for STNUs
Example 1

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3

Iteration 5: Observe outcome
• Execute X at 17

Executions: Z = 0 , A = 9 , C = 15 , Y = 16 , X = 17
Luke Hunsberger Recent Advances in Temporal Networks 176 / 249



Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
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Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
A projection of an STNU is the STN that results from fixing all ofits contingent links to allowable values.
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Dispatchability of STNUs

Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
A projection of an STNU is the STN that results from fixing all ofits contingent links to allowable values.
If there are k contingent links, then there is a k-dimensionalspace of all the projections.
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Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The sample STNU:

X C Z

Y A

−6

−7

C:
−

10
c:1C:− 11

C:− 10

1
1

−2

3
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Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The projection of that STNU where C − A = 6:

X C Z

Y A

−6

−7

−6
6−6

−6

1
1

−2

3
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Dispatchability of STNUs
Morris [2014, 2016] formally analyzed STNU dispatchability
THEOREM:

An STNU is dispatchable if and only ifall of its projections are dispatchable (as STNs).
The projection of that STNU where C − A = 10:

X C Z

Y A

−6

−7

−10
10−10

−10

1
1

−2

3
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STNU Projection
One more example
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Real-Time Execution of Dispatchable STNUs
STNU dispatchable iff every projection is

• We don’t know in advance which projection will occur.
• However, for any projection, running the STNU version of theRTE algorithm (without knowing what the projection is) isequivalent to running the STN version of the RTE algorithm onthat projection, where the durations of the contingent time-pointsare chosen to match that projection.
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Converting STNUs into Dispatchable Form

• Recall that not all consistent STNs are dispatchable.
• But consistent STNs that are vee-path complete (VPC) aredispatchable.
• Similarly, not all DC STNUs are dispatchable.
• But there are two recent algorithms for transforming DC STNUsinto equivalent dispatchable forms.
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Morris’ 2014 Algorithm for STNU Dispatchability
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Morris’ 2014 Algorithm
Easy to modify to generate dispatchable STNU

• Morris’ 2014 DC-checking algorithm does not typically generatea dispatchable STNU.
• In particular, as it back-propagates from negative edges, it onlyinserts non-negative bypass edges.
• Simply modifying it to insert the negative edges it traverses alongthe way ensures that the output STNU will be dispatchable.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12
Generates bypass edges for all non-vee-paths it traverses.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(LC) −6

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.

Luke Hunsberger Recent Advances in Temporal Networks 183 / 249



Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(NC) −1
(LC) 0(UC) 9

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9

(UC) C2:− 10

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Morris’ 2014 O(n3) DC-checking algorithm
Finding a Semi-Reducible Negative Cycle

C1

A1

C1 C2

A2

C2 C1

A1

C1

X

C1 :− 3

c 1:1
−1

C2 :− 10 c 2:1
8

C1 :− 3 c 1:1

−7

12

(UC/LR) 5
(LC) −6

(LC) 0

(NC) −1
(LC) 0(UC) 9 C2 :− 1

(UC) C2:− 10
C2:− 1

Generates bypass edges for all non-vee-paths it traverses.
Ensures a vee-path between every connected pair of TPs.
However, it can add too many edges...
For example, running it on an STN will generate far more edgesthan the STN dispatchability algorithms we’ve seen.
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Faster STNU Dispatchability Alg.
[Hunsberger and Posenato, 2023]
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A New Dispatchability Alg. for STNUs: FDSTNU
[Hunsberger and Posenato, 2023]

The FDSTNU algorithm has three phases:
1 Run the RUL2021 DC-checking algorithm, propagating backwardfrom UC edges aiming to bypass UC edges with ordinary edgesand waits.
2 Propagate forward from each LC edge, but only propagatingalong LO edges, aiming to bypass LC edges with ordinary edges.
3 Run the STN dispatchability algorithm on the ordinary subgraphto make that ordinary subgraph dispatchable as an STN.
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Comparing RUL− and FDSTNU
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The FDSTNU Algorithm
Phase One: Propagate Backward from UC Edges – RUL2021
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The FDSTNU Algorithm
Phase Two: Propagate Forward from LC Edges – but only along LO edges
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Empirical Comparison
FDSTNU vs. Morris14 vs. RUL2021 (only DC)
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Related Work

Managing execution of DC STNUs
[Hunsberger, 2010, 2015b]

Using Timed Game Automata (TGAs) to synthesize executionstrategies for STNUs
[Cimatti et al., 2014b]
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Conditional Simple TemporalNetworks (CSTNs)
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Conditional STNs
Motivation

Many actions generate information (e.g., medical tests, opening abox, monitoring traffic).
The generated information is generally not known in advance, butdiscovered in real time.
Some actions only make sense in certain scenarios (e.g., don’tgive drug if test result is negative).
An execution strategy could be more flexible if it could reactdynamically to generated information.
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Conditional STNs
Motivation (ctd.)

Many businesses using workflow management systems toautomate manufacturing processes.
Hospitals can use workflows to represent possible treatmentpathways for a patient.
CSTNs can serve as the temporal foundation for workflowmanagement systems.
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Conditional STNs (CSTNs)∗

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressive

Time-points and constraints as in STNs
Observation time-points generate truthvalues for propositional letters
Time-points and constraints labeled byconjunctions of propositional letters

∗ [Tsamardinos et al., 2003]
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Conditional STNs
Propositional Labels

Propositional letters: p,q, r , s, t , . . .

Each p has corresponding observation time-point, P?.Executing P? generates truth value for p

Label: conjunction of literals (e.g., p(¬q)r)
A scenario specifies values for all letters(e.g., p = true, q = false, r = true).
The real scenario is only revealed incrementally.
Time-points and constraints∗ can be labeled;they only apply in scenarios where their labels are true.

∗ [Hunsberger et al., 2015]
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Conditional STNs
Sample CSTN

Z P?

Q?p Epq

Y
[1, 2]

[15,
20],

p

[1, 5], pq

[5, 30], p¬q

[5, 30], pq

[1, 5],¬p

[2, 30]

P? and Q? represent tests for a patient.
Q? is a child of P?: only executed in scenarios where p = true.
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Conditional STNs
Dynamic Consistency

Dynamic Execution Strategy: execution decisions can react toobservations.
A CSTN is dynamically consistent (DC) if there exists a dynamicexecution strategy that guarantees that all relevant constraintswill be satisfied no matter which scenario is incrementallyrevealed over time.
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Conditional STNs
Approaches to DC Checking

Convert to Disjunctive Temporal Problem
[Tsamardinos et al., 2003]

Convert to controller-synth. problem for Timed Game Automaton
[Cimatti et al., 2014a]

Convert to Hyper Temporal Network consistency problem
[Comin and Rizzi, 2015]

Propagate labeled constraints
[Hunsberger and Posenato, 2018b, 2020; Hunsberger et al., 2015]
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Conditional STNs
DC Checking via Propagation

Propagate labeled constraints
— Motivated by related work on STNs with choice [Conrad and Williams, 2011]
Introduce new kind of literals and labels:
Q-literals (e.g., p?) and Q-labels (e.g., p¬q(r?)s)
Analysis of negative q-loops and negative q-stars

Luke Hunsberger Recent Advances in Temporal Networks 199 / 249



Conditional STNs
Labeled Constraints

X Y
⟨δ, α⟩

Y − X ≤ δ must hold in every scenario where α is true.
(If α = ⊡, then Y − X ≤ δ must hold in all scenarios.)
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Conditional STNs
Labeled Constraints

X Y
⟨10,p(¬q)⟩

Y − X ≤ 10 must hold in every scenario where p(¬q) is true.
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Conditional STNs
Propagation Rules for CSTNs

Labeled Propagation: LP and qLP
Label Modification: R0 and qR0
Label “Spreading”: R∗3 and qR∗3

(The “q” rules propagate q-labeled constraints.)
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Conditional STNs
The LP Rule

W X Y
⟨3, pq⟩ ⟨5, q¬r⟩

Labels of two pre-existing edges are conjoined;The resulting label must be consistent.
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Conditional STNs
The LP Rule

W X Y
⟨3, pq⟩ ⟨5, q¬r⟩

⟨8, pq¬r⟩

Labels of two pre-existing edges are conjoined;The resulting label must be consistent.
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Conditional STNs
The R0 Rule

P? X
⟨−5, pq¬r⟩

Edge weight must be negative;Any occurrence of p (or ¬p) removed from label.
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Conditional STNs
The R0 Rule

P? X
⟨−5, pq¬r⟩

⟨−5, q¬r⟩

Edge weight must be negative;Any occurrence of p (or ¬p) removed from label.
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Conditional STNs
The R∗3 Rule

P? X Y
⟨−3, qr⟩ ⟨−8, pqs⟩

Pre-existing labels must be consistent;
Generated label is conjunction of pre-existing labels— minus any occurrence of p (or ¬p);
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.
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Conditional STNs
The R∗3 Rule

P? X Y
⟨−3, qr⟩ ⟨−8, pqs⟩

⟨−3, qrs⟩

Pre-existing labels must be consistent;
Generated label is conjunction of pre-existing labels— minus any occurrence of p (or ¬p);
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.
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Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−3, q⟩
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Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−3, q⟩
⟨−2, pq⟩
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Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,p⟩

⟨−2
,⊡

⟩

⟨−3, q⟩
⟨−2, pq⟩
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Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2, pq⟩⟨−2, pq⟩

⟨−2,⊡⟩
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Conditional STNs
Example: Non-DC Instance
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Conditional STNs
Example: Non-DC Instance

Example 2 (Non-DC Instance)

ZX1

X2 Q?

P?
⟨1,¬p¬q⟩

⟨−
2,p

q⟩ 0 ⟨−2
,⊡

⟩
⟨−3, q⟩ ⟨−2,⊡⟩

⟨−2,⊡⟩

⟨−1,¬p¬q⟩

⟨−2,⊡⟩

There is a scenario, ¬p¬q, in which there exists a negative loop!Therefore, the CSTN is not DC!
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Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Example 3 (Non-DC instance, but LP, R0 and R∗3 not enough)

ZX1

X2 Q?

P?

R?0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩
⟨−

4,¬p¬
q⟩
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Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Example 3 (Non-DC instance, but LP, R0 and R∗3 not enough)

ZX1

X2 Q?

P?

R?0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩
⟨−

4,¬p¬
q⟩

⟨−2, pq⟩, ⟨−2, pr⟩, ⟨−2, q¬r⟩
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Conditional STNs
Propagating Q-Labels

Propagating along consistent labels is insufficient
Q-labels: contain literals such as p?.
A constraint labeled by p? must hold as long as p’s value isunknown (i.e., as long as P? remains unexecuted).
Conjunction operation generalized to cover q-labels:

p ∧ ¬p ≡ p?; p ∧ p? ≡ p?; ¬p ∧ p? ≡ p?; etc.
Q-labels only needed on lower-bound constraints∗(i.e., edges pointing at Z).

∗ [Hunsberger and Posenato, 2018b]

Luke Hunsberger Recent Advances in Temporal Networks 207 / 249



Conditional STNs
The qR0 Rule

P? Z
⟨−5, (p?)q¬r⟩

Edge must terminate at Z;
Edge weight must be negative;
Any occurrence of p (or ¬p or p?) removed from label.
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Conditional STNs
The qR0 Rule

P? Z
⟨−5, (p?)q¬r⟩

⟨−5, q¬r⟩

Edge must terminate at Z;
Edge weight must be negative;
Any occurrence of p (or ¬p or p?) removed from label.
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Conditional STNs
The qR∗3 Rule

P? Z Y
⟨−3, q(r?)⟩ ⟨−8, p¬qr(s?)⟩

Labels need not be consistent;
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.
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Conditional STNs
The qR∗3 Rule

P? Z Y
⟨−3, q(r?)⟩ ⟨−8, p¬qr(s?)⟩

⟨−3, (q?)(r?)(s?)⟩

Labels need not be consistent;
Lefthand weight must be negative;
Generated weight is max of pre-existing weights.
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Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,pr⟩

⟨−3, q¬r⟩

⟨−4,¬p¬q⟩
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Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,⊡

⟩

⟨−2,⊡⟩,
⟨−3, q?⟩,

⟨−4,¬p¬q⟩

⟨−2,⊡⟩, ⟨−3, q?⟩, ⟨−3, q¬r⟩⟨−2,⊡⟩

Incidentally, the blue edges form a “negative q-star”.
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Conditional STNs
Propagating Q-Labels

Propagating along q-labels is sufficient!
Example 4 (Non-DC instance confirmed by rules LP, qR0 and qR∗3)

ZX1

X2 Q?

P?

R?

0

⟨1,¬p¬q⟩

⟨−
2,p

q⟩

⟨−2
,⊡

⟩

⟨−2,⊡⟩,
⟨−3, q?⟩,

⟨−4,¬p¬q⟩

⟨−2,⊡⟩, ⟨−3, q?⟩, ⟨−3, q¬r⟩⟨−2,⊡⟩

⟨−1,¬p¬q⟩
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Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩⟨−2,¬pq⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩
⟨0,⊡⟩

⟨0,⊡⟩
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Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩, ⟨−2,¬pq⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩

⟨−7,⊡⟩ ⟨0,⊡⟩

⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨0,⊡⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩
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Conditional STNs
Negative Q-Loop Example

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−∞, (p?)(q?)r⟩

⟨0,⊡⟩, ⟨−2,¬pq⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨0,⊡⟩, ⟨−7,¬q¬r⟩

⟨−7,⊡⟩ ⟨0,⊡⟩

⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨0,⊡⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

The Spreading LemmaThe minimum lower-bound constraint ⟨−7,⊡⟩has spread to all unexecuted time-points. [Hunsberger et al., 2015]
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Conditional STNs
DC-Checking Algorithm for CSTNs

The DC-Checking Algorithm exhaustively propagates constraintsusing LP, qLP , and qR∗3.
Returns NO if any negative self-loop with a consistent label isever found; otherwise returns YES.
In positive cases, constructs earliest-first strategy, which isviable due to the Spreading Lemma.
Although exponential-time in the worst case, shown to bepractical across a variety of sample networks.

[Hunsberger and Posenato, 2018b; Hunsberger et al., 2015]
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Conditional STNs
The Earliest-First Strategy

Keep track of current partial scenario (CPS), π.Initially π = ⊡.
After each execution event, compute effective lower bound (ELB)for each as-yet-unexecuted time-point.
ELB(X , π) restricts attention to lower bounds for X whose labelsare applicable to π.
Next time-point to execute is the one with the min. ELB value.
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Conditional STNs
Sample Execution

π = ⊡, Z = 0, ELB(P?,⊡) = −7; execute P? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩
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Conditional STNs
Sample Execution

Suppose p = true. π = p; ELB(X ,p) = 7 = ELB(R?,p).So execute X = 7 and R? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩,⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

⟨−1,¬pq⟩

⟨−1,¬p¬q⟩
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Conditional STNs
Sample Execution

Suppose r = true. π = pr ; ELB(Q?,p) = 8.So execute Q? = 8.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩,⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,

⟨−∞
, p?

⟩

⟨−1,¬pq⟩

⟨−1,¬p¬q⟩
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Conditional STNs
Alternative Execution

Suppose p = false. π = ¬p; ELB(Q?,¬p) = 7So execute Q? = 7.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩, ⟨−

9,¬p(q
?)⟩,⟨−

∞, p?
⟩

⟨−
1, p

r⟩

⟨8, pr⟩
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Conditional STNs
Alternative Execution

Suppose q = true. π = ¬pq; ELB(X ,¬pq) = 7.So execute X = 7. Afterward, execute R? = 8.

Q?[⊡]

X[⊡]

R?[⊡]

Z[⊡]P?[⊡]

⟨−
1, p

r⟩

⟨−1,¬p¬q⟩

⟨−1,¬pq⟩

⟨8, pr⟩

⟨−7,⊡⟩, ⟨−8,¬pq⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩
⟨−7,⊡⟩, ⟨−8, pr⟩, ⟨−∞, p?⟩

⟨−7,⊡⟩,
⟨−8,¬p¬q⟩,

⟨−9,¬p(q
?)⟩,⟨−

∞, p?
⟩

⟨−
1, p

r⟩

⟨8, pr⟩

⟨−1,¬p¬q⟩
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Conditional STNs
Related Work

ϵ-dynamic consistency requires bounded reaction time ϵ > 0
[Comin and Rizzi, 2015].
Propagation-based ϵ-DC checking algorithm
[Hunsberger and Posenato, 2016].
Semantics of instantaneous reactivity for CSTNs
[Cairo et al., 2016].
Streamlined CSTNs
[Cairo et al., 2017].
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Conditional STNs
CSTN Summary

Theory of dynamic consistency for CSTNs very solid:
instantaneous vs. non-instantaneous reactivity
bounded reaction time.

Several proposed DC-checking algorithms: all exponential
—but propagation-based algorithm shows promise.

More work to do on flexible execution.
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Conditional STNs with Uncertainty
CSTNUs

STN
Y − X ≤ δ

STNU(actions withuncertain durations)

CDTN

CDTNU

DTN(disjunctiveconstraints)
CSTN(test actions,test results)

CSTNUDTNUmoreexpressive

A Conditional Simple Temporal Network with Uncertainty(CSTNU) combines contingent links from STNUs and observationtime-points from CSTNs.
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Conditional STNs with Uncertainty
Sample CSTNU

Z⊡ P ′
⊡ P?⊡

Q′
p Q?p E ′

pq Epq

Y⊡

[1, 2] [5, 10]
[15

,20
],

p

[5, 10] [1, 5], pq [5, 25]

[5, 30], p¬q

[0
,5

],pq

[1, 5],¬p

[2, 30]

Contingent links (P ′, [5,10],P?) and (Q′, [5,10],Q?) representtests for a patient.
Contingent link (E ′, [5, 25],E) represents the emergency therapy.
Contingent links have no propositional labels,but the labels on their endpoints must be the same.
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Conditional STNs with Uncertainty (CSTNUs)
Dynamic Controllability

Dynamic Execution Strategy: execution decisions may react toobservations and contingent durations.
A CSTNU is dynamically controllable if there exists a dynamicexecution strategy that guarantees that all relevant constraintswill be satisfied no matter which scenario is incrementallyrevealed over time, and no matter how the contingent durationsturn out.
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Conditional STNs with Uncertainty (CSTNUs)
DC-Checking for CSTNUs

Convert to Timed Game Automaton
[Cimatti et al., 2014a]
Propagate labeled constraints
[Hunsberger and Posenato, 2018a]
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Propagate labeled constraints as done for CSTN
Propagate also upper-case and lower-case (contingent) edgesas done for STNU considering labeled constraints
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Propagate labeled constraints as done for CSTN
Propagate also upper-case and lower-case (contingent) edgesas done for STNU considering labeled constraints

The mixing of these two kind of propagations requires extending theSTNU-concept of upper-case values!
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Generalizing Upper-Case Labels
Given contingent time-points C1,C2, . . . ,Ck, their names arecalled Upper Case (UC) alphabetic-letters (a-letters).
An UC alphabetic label (a-label) is a set of a-letters:

is empty, notated as ⋄; or
contains one or more UC a-letters, notated as Ci1 . . .Cim .

For any UC a-labels ℵ,ℵ′, their conjunction is given by theirunion (i.e., ℵℵ′ = ℵ ∪ ℵ′).
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Generalizing labeled values
Each edge is annotated by a triple, called a labeled value

A labeled value is a triple, ⟨δ, ℵ, α⟩, where:
δ ∈ R
ℵ is an a-label
α is a propositional label (from CSTN)
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Example 5 (A CSTNU represented using labeled values)

Z

A0

C0 X1 C2 A2

A1 C1

P?
⟨17

,
⋄,

p⟩

⟨3
,

c
,
⊡
⟩

⟨−10
,

C
,
⊡
⟩

⟨7, ⋄, p⟩ ⟨2, ⋄, ¬p⟩

⟨−7, C2, ⊡⟩

⟨1, c2, ⊡⟩

⟨8,
⋄,

p⟩

⟨1, c1, ⊡⟩

⟨−10, C1, ⊡⟩

−4

−8

Edge value v is a shorthand for ⟨v , ⋄, ⊡⟩
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Conditional STNs with Uncertainty (CSTNUs)
Propagation Rules for CSTNUs

Forward Upper Case Propagation: z!
Labeled Extended Propagation: zLP/Nc/Uc

Cross Case and Lower Case Propagation: zLc/Cc
Label Removal: zLR

Label Modification: zqR0Label “Spreading”: zqR∗3
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Conditional STNs with Uncertainty (CSTNUs)
The z! rule

The z! rule can generate edges with multiple UC letters.

C A Z
⟨−y , C, ⊡⟩ ⟨v , ℵ, β⟩

Conditions:
−y + v < 0
β does not contain unknown literals.

Luke Hunsberger Recent Advances in Temporal Networks 227 / 249



Conditional STNs with Uncertainty (CSTNUs)
The z! rule

The z! rule can generate edges with multiple UC letters.

C A Z
⟨−y , C, ⊡⟩ ⟨v , ℵ, β⟩

⟨−y + v , Cℵ, β⟩

Conditions:
−y + v < 0
β does not contain unknown literals.
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Conditional STNs with Uncertainty (CSTNUs)
The zLP/Nc/Uc Rule

X Y Z
⟨u, ⋄, α⟩ ⟨v , ℵ, β⟩

Conditions:
u + v < 0
α and β must be consistent.

Luke Hunsberger Recent Advances in Temporal Networks 228 / 249



Conditional STNs with Uncertainty (CSTNUs)
The zLP/Nc/Uc Rule

X Y Z
⟨u, ⋄, α⟩ ⟨v , ℵ, β⟩

⟨u + v , ℵ, αβ⟩

Conditions:
u + v < 0
α and β must be consistent.
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Conditional STNs with Uncertainty (CSTNUs)
The zLc/Cc rule

A C Z
⟨x, c, ⊡⟩ ⟨v , ℵ, β⟩

Conditions:
x + v < 0
C ̸∈ ℵ

β does not contain unknown literals.
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Conditional STNs with Uncertainty (CSTNUs)
The zLc/Cc rule

A C Z
⟨x, c, ⊡⟩ ⟨v , ℵ, β⟩

⟨x + v , ℵ, β⟩

Conditions:
x + v < 0
C ̸∈ ℵ

β does not contain unknown literals.
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Conditional STNs with Uncertainty (CSTNUs)
The zLR rule

AZY C
⟨x, c, ⊡⟩⟨w , ℵ1, γ⟩⟨v , Cℵ, β⟩

Conditions:
C ̸∈ ℵℵ1
β, γ can contain unknown literals.
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Conditional STNs with Uncertainty (CSTNUs)
The zLR rule

AZY C
⟨x, c, ⊡⟩⟨w , ℵ1, γ⟩⟨v , Cℵ, β⟩

⟨m, ℵℵ1, β ⋆ γ⟩

where m = max{v ,w − x}.
Conditions:

C ̸∈ ℵℵ1
β, γ can contain unknown literals.
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Conditional STNs with Uncertainty (CSTNUs)
The zqR0 rule

P? Z
⟨w , ℵ, βp̃⟩

Conditions:
w < 0
β can contain unknown literals
p̃ ∈ {p,¬p,p?}
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Conditional STNs with Uncertainty (CSTNUs)
The zqR0 rule

P? Z
⟨w , ℵ, βp̃⟩

⟨w , ℵ, β⟩

Conditions:
w < 0
β can contain unknown literals
p̃ ∈ {p,¬p,p?}
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Conditional STNs
The zqR∗3 rule

P? Z Y
⟨w , ℵ1, γ⟩ ⟨v , ℵ, βp̃⟩

Conditions:
β, γ can contain unknown literals
p̃ ∈ {p,¬p,p?}
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Conditional STNs
The zqR∗3 rule

P? Z Y
⟨w , ℵ1, γ⟩ ⟨v , ℵ, βp̃⟩

⟨max{v ,w}, ℵℵ1, β ⋆ γ⟩

Conditions:
β, γ can contain unknown literals
p̃ ∈ {p,¬p,p?}
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Conditional STNs with Uncertainty (CSTNUs)
DC Checking via Propagation

Example 6 (A snapshot of CSTNU DC-checking algorithm)

Z

A0

C0 X1 C2 A2

A1 C1

P?

⟨17
,
⋄,

p⟩

⟨3
,

c
,
⊡
⟩

⟨−10
,

C
,
⊡
⟩

⟨7, ⋄, p⟩ ⟨2, ⋄, ¬p⟩

⟨−7, C2, ⊡⟩

⟨1, c2, ⊡⟩

⟨8,
⋄,

p⟩

⟨1, c1, ⊡⟩

⟨−10, C1, ⊡⟩

−4

−8−7

−10, ⟨−17, C0 , ⊡⟩

−11

−11, ⟨−21, C1 , ⊡⟩

−12, ⟨−13, C1, ⊡⟩...⟨−20, C 1C 2, ⊡⟩

...⟨−18
,

C1 C2
,
⊡
⟩

⟨−1, C1C2, p⟩

This CSTNU is not DC: if C0 occurs at its minimum, while C1 and C2 at their maximum,then X cannot be set satisfying all constraints.
After 123 propagations, the CSTNU contains an explicit negative loop at Z.
The blue constraints are some of those determined by the algorithm before the negativeloop is discovered.
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Conditional STNs with Uncertainty (CSTNUs)
DC-Checking Algorithm for CSTNUs

The DC-Checking Algorithm does exhaustive propagation
Returns NO if any negative loop with a consistent label is everfound; otherwise, returns YES.
In positive cases, constructs earliest-first strategy, which isviable due to the spreading lemma for CSTNUs.
The algorithm has exponential-time complexity in the worst case.
Currently we are working on some rule optimizations for making itas practical for a variety of sample networks as the CSTNDC-checking algorithm.
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Conditional STNs with Uncertainty (CSTNUs)
CSTNU Summary

Theory of dynamic controllability for CSTNUs has a solidfoundation.
Two competing DC-checking algorithms∗, both exponential.
Propagation-based algorithms show promise, but require furtherinvestigation.
Alternatives to earliest-first strategy?

∗ [Hunsberger and Posenato, 2018a]
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CDTNUs
Adding Disjunction to CSTNUs

A Conditional Disjunctive Temporal Network with Uncertainty(CDTNU) augments a CSTNU to include disjunctive constraints.
Possible to convert the DC-checking problem for CDTNUs into a
controller-synthesis problem for Timed Game Automata(TGAs)∗.
Highlights connections between temporal networks and TGAs,but algorithm not yet practical.

∗ [Cimatti et al., 2016]
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CDTNUs
Sample Workflow

Luke Hunsberger Recent Advances in Temporal Networks 237 / 249



CDTNUs
TGA Encoding of Workflow
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