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Abstract

In this paper we apply a spreading activation algorithm to the problem of mapping
senses between machine readable dictionaries, which is required in order to combined
information extracted from them. The algorithm is run over networks automatically
constructed from dictionary definition texts. On a sample corpus of sense definitions,
our strategy correctly identifies the corresponding homograph in a second dictionary in
97% of the cases, and the correct sense within that homograph in 90% of the cases. This
result is a substantial improvement over previously proposed strategies, such as Lesk's
method. It also demonstrates that spreading activation strategies, which have rarely been
used in computational lexicography, are one means to exploit the full potential of
relations implicitly encoded in machine-readable dictionaries.
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1. Introduction

It is widely recognized that machine readable dictionaries are a rich source of semantic information

about word senses, and several researchers are working on automatic procedures to identify and

extract this information for use in creating lexical knowledge bases (see, for instance, Amsler, 1980;

Calzolari, 1984; Chodorow et al., 1985; Markowitz et al., 1986; Byrd et al., 1987; Slator and

Wilks, 1987; Véronis and Ide, 1990). However, dictionaries differ considerably in the amount and

kinds of information they include, and no single dictionary seems to be complete. It is therefore

advantageous to combine information extracted from several dictionaries in order to create a

comprehensive knowledge base. For example, it has been shown that combining taxonomic

information automatically extracted from several dictionaries significantly improves the

completeness and precision of the resulting taxonomic tree (Ide and Véronis, 1990a; Véronis et al.,

1990).

When information from multiple dictionaries is to be combined, we encounter what has been called

the "mapping problem": that is, the senses given for a word in one dictionary must be mapped onto

those given in each of the others, in order to determine which information applies to a common

concept. Obviously, automated means to accomplish bilateral dictionary mappings is desirable, and

at least two automated sense mapping strategies have been proposed (Chodorow, Ravin, and Sachar,

1988; Byrd, 1989).

In this paper, we describe a means to automatically map senses between machine-readable

dictionaries by applying a spreading activation algorithm to networks created from one dictionary's

definition texts. We have already seen promising results from the application of the spreading

activation approach to word sense disambiguation (Ide and Véronis, 1990b; Véronis and Ide, 1990).

The success of the strategy relies upon common links within the network for the words used to

"prime" the network when the spreading activation algorithm is applied. For word sense

disambiguation, the input consists of a word to be disambiguated and one or more other words with

which it appears in context; for sense mapping, input consists of words in a sense definition from a

dictionary other than the one from which the network was created. Because we can expect a greater

degree of connectivity among words within a sense definition text within the network than for words

in context, our strategy should be even more successful for sense mapping than for word sense

disambiguation.

The work described in this paper has been carried out in the context of a joint project of Vassar

College and the Groupe Représentation et Traitement des Connaissances of the Centre National de

la Recherche Scientifique (CNRS), which is concerned with the construction and exploitation of a
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large lexical data base of English and French. At present, the Vassar/CNRS data base includes,

through the courtesy of several editors and research institutions, several English and French

dictionaries (the Collins English Dictionary, the Oxford Advanced Learner's Dictionary, the

COBUILD Dictionary, the Longman's Dictionary of Contemporary English, theWebster's 9th

Dictionary, and the ZYZOMYS CD-ROM dictionary from Hachette Publishers) as well as several

other lexical and textual materials (the Brown Corpus of American English, the CNRS BDLex data

base, the MRC Psycholinguistic Data Base, etc.). A broad description of the database and the

activities within the Vassar/CNRS project appears in Véronis et al. (1990).

2. The mapping problem

Sense distinctions in published dictionaries differ widely in their number and form, and thus the

problem of mapping dictionaries is not straightforward. For instance, monolingual dictionaries for

use by native speakers often specify subtle distinctions among senses and include rare or obsolete

senses. Learner's dictionaries, on the other hand, typically provide fewer, more clearly-cut sense

distinctions. These differences are clear in the definitions of ash from the Collins English

Dictionary (CED),  which is intended for native speakers, and the Oxford Advanced Learner's

Dictionary (OALD) given in figure 1.

CED:
ash 1

1. the nonvolatile products and residue formed when matter is burnt.
2. any of certain compounds formed by burning.
3. fine particles of lava thrown out by an erupting volcano.
4. a light silvery grey colour, often with a brownish tinge.
ash 2

1. any oleaceous tree of the genus Fraxinus, esp. F. excelsior of Europe and Asia,
having compound leaves, clusters of small greenish flowers, and winged seeds.
2. the close-grained durable wood of any of these trees, used for tool handles, etc.
3. any of several trees resembling the ash, such as the mountain ash
ash 3  
the digraph æ, as in Old English, representing a front vowel approximately like that of
the a in Modern English hat. The character is also used to represent this sound in the
International Phonetic Alphabet.

OALD:
ash 1

forest tree with silver-grey bark and hard, tough wood; wood of this tree
ash 2

1. powder that remains after [something] has burnt
2. the burnt (=cremated) remains of a human body

Figure 1. Definition of "ash" from the CED and OALD
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These two definitions demonstrate many of the difficulties inherent in mapping dictionaries. In the

best case, a sense mapping between two dictionaries for a given sense is one-to-one, in which case

there is a direct mapping between the sense in one dictionary and some sense of the same word in

the other. This is the case for ash 1.1 in the CED and ash 2.1 in the OALD. In other cases, the

mapping may be one-to-many, where a single sense in one dictionary maps onto two or more in the

target dictionary, or the reverse, where the mapping is many-to-one. If we do not take the semicolon

in the OALD's ash 1 as dividing this sense into two senses, this sense provides an example of a

one-to-many mapping because it maps onto both ash 2.1 and ash 2.2 in the CED. (Note that in our

experiments, we do take the semicolon as dividing senses.) Finally, there can be a one-to-zero

mapping, where there is no corresponding sense in the target dictionary, which is the case for ash

2.2  from the OALD and, mapping from the CED to the OALD, for CED senses ash 1.3, ash 1.4,

ash 2.3, and ash 3. Occasionally, a mapping may be even more difficult, where a given sense

corresponds only partially to a single sense or perhaps corresponds partially to two or three senses

in the target dictionary, without directly overlapping any one of them.

Previously proposed solutions to the mapping problem derive from Lesk's (1986) sense

disambiguation method, which computes the degree of overlap--that is, number of shared words--in

definition texts. Applied straightforwardly to the mapping problem, this procedure determines the

senses of a word from each of two dictionaries with the greatest number of overlaps. Although this

strategy has been applied with some success to the mapping of synonym dictionaries (Chodorow,

Ravin, and Sachar, 1988), it appears that its success is limited for mapping ordinary dictionaries,

with fewer than 50% correct mappings (Byrd, 1989). Byrd proposed a similar strategy which

computes overlaps between dictionary sense property vectors, which for each sense of a given word

include the words in its definition as well as other information about these words extracted from the

definition text, such as typical subject, object, and instrument; subject and object selectional

restrictions; synonyms; etc. The degree of overlap is computed by matching words property-by-

property, and thus the mapping criteria are more constrained than in the earlier approach. To date,

no report of the results of applying this method has been published.

All of these suggested mapping procedures, even those using extracted information, rely for their

success on the presence of shared words in corresponding senses. However, these methods

typically succeed due to the presence of only one or two shared words, and thus the relation

between senses is often very tenuous. Another problem arises when the same number of overlaps

exists with more than one sense, in which case it is not possible to determine which is the correct

mapping. These methods also fail to take into account less immediate relationships between words.
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As a result, they will not determine, for instance, the sense of cape  in the CED which corresponds

to cape2  ("a high point of land going out to the sea") in the OALD, because the two do not share

any words in common. However, a strategy which takes into account a longer path through

definitions will find that the word headland, which appears in the corresponding definition in the

CED, contains the words land and sea in its definition, and both these words appear in the OALD

definition. Longer paths may also reveal additional links between senses, which can help refine

information about overlaps.

3. Network topology

We demonstrate an automatic method for sense mapping that does not demand the presence of

shared words in the definition texts of corresponding senses, but instead utilizes a complex network

of words and senses automatically constructed from dictionary definition texts. In our experiments

so far, definition texts from the CED have been used to build the network.  

The definition network is built by a simple, straightforward, automatic procedure that does not

require hand coding or sophisticated analysis to extract information from definitions (which may

not be present even if such analysis is applied). The network is constructed by first extracting the

definition text for each word in the CED. The definition texts are pre-processed to remove function

and other common or problematic words (for instance, words with 70 or 80 senses of their own)

and all remaining words are morphologically normalized (figure 2). The network is constructed with

a simple program that scans the pre-processed definition texts and creates links among words and

senses. Within the network, each lexical entry is represented by a complex grouping of nodes

consisting of a central node (or word node) which represents the lexical entry itself. This node is

connected to a number of sense nodes that represent the different senses (definitions) of this word

in the CED. Thus for the lexical entry ash, eight sense nodes would exist, one corresponding to

each of the eight senses of ash given in the CED. Each of these sense nodes is connected to the

word nodes representing the words that appear in its definition. These words are, in turn, connected

to sense nodes according to their definitions within the CED, etc. In addition, for each connection

from a node i to a node j, there is a reciprocal connection from node j to node i.  A small portion of

the network is pictured in figure 3.
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ash
1.1 nonvolatile product residue matter burn
1.2 compound burn
1.3 particle lava throw erupt volcano
1.4 light silvery grey colour brown tinge
2.1 oleaceous tree compound leave cluster green flower wing seed
2.2 close grain durable wood tree tool handle
2.3 tree resemble ash mountain ash
3.1 digraph english front vowel modern english hat character sound international

phonetic alphabet

Figure 2. Pre-processed definition for the word "ash"

word nodes

sense nodes

activatory links

inhibitory links

BURN

burn1

burn2

burn3

burn4

TREE

RESIDUE

ASH

ash1_1

ash2_1

ash1_2

ash1_3

Figure 3. Topology of the network
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We assume that there is a semantic relation between a word and the words used to define it.

Therefore, we can view the structure we build from definition texts in the CED as a highly complex,

interconnected network in which semantically related words are connected by one or more paths

within the network. The more related the words, the more connected they should be, both by a

greater number of connections and by shorter pathlengths within those connections. We rely on

these assumptions to uncover both immediate and less than immediate semantic relations among

words and senses: our method does not depend, as Lesk-based strategies do, on a direct connection

between two words (reflecting an overlap in the wording of two definition texts), and thus more

remote relations can be detected. Thus, even when no overlapping words exist in corresponding

definition texts, a relationship between the definition words may be discoverable.

Ideally, the network we build would include the entire dictionary. However, the resulting network for

the CED, which contains 90,000 words, would be enormous, and so for practical reasons we

currently limit the size of the network to a few thousand nodes and 10 to 40 thousand transitions.

We do this by building only the portion of the network that represents the input words, the words in

their definitions, and the words in these words' definitions in turn  (as well as the intervening sense

nodes). Thus for each set of input words, a potentially different network is constructed. Obviously,

increasing the network's coverage of the dictionary would substantially increase its interconnectivity,

which could improve our results but which may also obscure straightforward semantic relations by

being "overconnected." We are currently working on a large-scale implementation which would

enable us to experiment with the use of a network built from the entire dictionary, or larger sub-

portions of it.

4. The spreading activation strategy

The spreading activation strategy requires that links among nodes in the network be either

activatory or inhibitory. Practically speaking, activatory links are those with a positive weight (in our

model, a number between 0 and +1) and inhibitory links are those with a negative weight (0 to -1).

The effect of these weights when the spreading activation algorithm is applied is described below. In

our model, the connections from word to sense nodes and from sense to word nodes are activatory,

and the different sense nodes for a given word are interconnected by inhibitory links, as shown in

figure 3.
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Again, we employ a simple program to apply the spreading activation algorithm over the network.

The activation model we use is derived from McClelland and Rumelhart (1981). In general terms,

the procedure works by first activating the nodes within the network corresponding to the input

words (in our case, a headword and words from one of its OALD senses; see section 5.1). Within

the network at any time, each node has an activation level, initially set to 0 for all nodes in the

network. The activation initially applied to the input nodes gives these nodes an activation level of 1

in our implementation. Then, each input word node sends activation to its sense nodes, which in turn

send activation to the word nodes to which they are connected, and so on throughout the network

for a number of cycles. The amount of activation sent by a node to its neighbor is a product of the

activation level of that node and the weight on the link between the node and its neighbor. Sense

nodes for the same word are interconnected by inhibitory links, which have negative weights, and

thus send negative activation or inhibition  to one another. These nodes can be considered to be "in

competition", since the more active one becomes, the more it will tend to decrease its neighbors'

activation  levels. Word and sense nodes also receive feedback via the reciprocal links from the

nodes to which they are connected. The total amount of activation received by any node will be the

sum of the activation and inhibition received from all of its neighbors. Because the dictionary

network can be heavily interconnected, a given node may receive input from a large number of

sources.

The spreading activation algorithm proceeds by repeating this process, in which activation is applied

to input words and activation is subsequently sent from node to node throughout the network, over a

number of cycles. As the cycles progress, feedback and inhibition cooperate in a "winner-take-all"

strategy to activate increasingly related word and sense nodes and deactivate the unrelated or weakly

related nodes. Eventually, after a few dozen cycles, the network stabilizes in a configuration where

only the sense nodes with the strongest relations to other nodes in the network are activated.

Because of the "winner-take-all" strategy, at most one sense node per word will ultimately be

activated.

We can describe the activation model in mathematical terms as follows. At any instant t, a node i in

the network has an activation level ai(t) with a real value. If a node has a positive activation level, it is

said to be active. If the node receives no input from its neighbors, it tends to return to a resting level

ri, more or less quickly depending on decay rate θi. The active neighbors of a node affect its

activation level either by excitation or inhibition, depending on the nature of the link. Each

connection towards a given node i from a node j has a weight wji, which has a positive value for

excitatory links and a negative value for inhibitory links (note that for each link to node i from a

node j there is a reciprocal link in the network from i to j, andwij can be different from wji). At any
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cycle, the total input ni(t) of input from its neighbors on node i is the inner product of the vector of

the neighbors' activation levels by the connection weight vector:

ni(t) =∑
j

wjiaj(t) 

This input is constrained by a "squashing function" which prevents the activation level from going

beyond a defined minimum and maximum.  A node becomes increasingly difficult to activate as its

level approaches the maximum, and increasingly difficult to inhibit as it approaches the minimum.

In mathematical terms, when the overall input is activatory, that is, when ni(t) > 0, the actual effect

on node i is determined by:

εi(t) = ni(t) (max - ai(t)).

When the overall input is inhibitory, the actual effect is determined by:

εi(t) = ni(t) (ai(t) - min).

The new activation level of a node i at time t + ∆t  corresponds to the activation of this node at time

t, modified by its neighbors' effect and diminished by the decay θi(ai(t) - ri):

ai(t + ∆t ) = ai(t) + εi(t) - θi(ai(t) - ri).

Finally, each node is affected by a threshold value τi, below which it remains inactive.

Connection weights are fixed a priori. In early experiments, they were the same for all connections,

but we discovered that "gang effects" appear due to extreme imbalance among words having few

senses and hence few connections, as well as words containing up to 80 senses and several hundred

connections, and that therefore dampening is required. In our current experiments, connection

weights are determined by a simple decreasing function of the number of outgoing connections

from a given node. We have applied no other criteria for assigning weights, although several

possibilities, such as information about frequency, collocations, synonomy and other semantic

relations, suggest themselves. However, all of these possibilities would require additional and

possibly sophisticated processing to be implemented. Before we pursue these options, we would

like to first determine how much can be accomplished with a network which requires only simple

procedures to create, as well as the extent of the semantic information implicit in this network.
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5. Testing the model

5.1 Method

We selected 23 words with which to conduct our initial experiments. Each of these words has at

least two homographs (with unrelated etymologies--for example, ash as residue and ash as tree) in

the CED, and thus at least two clearly distinguishable senses exist for each. For each homograph,

one sense for which a one-to-one mapping exists between the OALD and the CED was chosen and

tested. We have so far restricted our experiments to one-to-one mappings in order to test the

viability of our method for the simple case, before moving on to more complex cases. Also,

restricting the experiments to only the straightforward cases enables close monitoring of the

network's behavior. Further, if we can handle one-to-one mappings, we can handle many-to-one

mappings as well, since in these cases the network will run independently on different definitions

and simply produce the same result. Means to handle other mapping situations are discussed in

section 5.2.

The characteristics of the OALD and CED definitions for our corpus are described in figure 4. In

computing the number of senses for a given word, we assume that semicolons within definition

texts indicate a division between senses, and we disregard senses which apply to compounds and

derived forms. In general, we test one sense per homograph for each word in the corpus, but note

that  only one sense of sage was tested since no staightforward mapping for an OALD sense of

sage 2 exists. We also tested only one sense of sash, because the entry for sash 2 in the OALD

contains only a sense for the compound sash-window.

To achieve sense mapping, we apply the spreading activation algorithm described in section 4 over a

network created from definition texts in the CED. Input to the network consists of a headword

together with the words in one of its sense definitions from the OALD. This sense is to be mapped

to a sense in the CED for the input headword. The OALD definition texts are pre-processed in the

same way as the definitions used to create the network, as described in section 3. After the

spreading activation algorithm is run, only one sense node attached to the input headword node is

active in the network. This node should identify the CED sense that corresponds to the OALD input

sense.
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OA CE
# word hom senses hom senses

1 ash 2 4 3 8
2 bay 5 15 5 22
3 cape 2 3 2 3
4 colon 2 2 4 7
5 dam 2 6 4 7
6 fluke 3 5 3 8
7 lawn 2 3 2 3
8 mead 2 2 2 2
9 mull 3 3 5 5
10 pike 4 6 4 7
11 pitcher 2 3 2 5
12 poker 2 2 2 3
13 port 5 9 6 14
14 punch 3 9 3 13
15 pupil 2 2 2 3
16 reel 3 10 3 10
17 rook 3 6 2 4
18 sage 2 6 2 6
19 sash 2  1* 2 3
20 sty 2 2 2 4
21 tend 2 4 2 7
22 tick 4 8 4 12
23 viola 2 2 2 3
total 61 113 68 159
avera 2.7 4.9 3.0 6.9

Figure 4. Test Corpus Characteristics
* Note that while there are two entries for sash in the OALD, the second contains only a

compound, sash-window, and has been excluded.

5.2. Results

The spreading activation procedure was applied to 59 input senses from the OALD. On average, an

input definition contains 4.8 content words. The networks constructed from the CED for our

experiments contain an average of 3347 word nodes and 2866 sense nodes, and an average of  6212

nodes altogether. The networks also contain an average of 2866 word-to-sense node transitions,

10761 sense-to-word node transitions, and 13627 total transitions.

The correct homograph in the CED was identified by the network in 57 of the 59 cases (97%). In 5

cases, the network identified the right homograph, but selected another sense within that homograph.
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Therefore, the correct homograph and the correct sense were identified in 53 of the 59 cases (90%).

On the same corpus (using the same pre-processed input and definition texts), Lesk's strategy

identifies the correct homograph in only 83% of the cases and the correct sense in 74% of the cases.

The two cases where the network identified the wrong homograph pertain to the same word, port.

This example is particularly difficult, largely because port has several homographs with some

similar vocabularly among them. The definitions that should match in the first failure are

(OALD) port 1.2 town or city with a harbour, esp one where customs officers are stationed.
(CED) port 1.1 a town or place alongside navigable water with facilities for the loading and

unloading of ships.

These definitions are connected by one common word, town, but otherwise they not only do not

share vocabularly but also focus on very different properties of a port-as-harbor. The network

incorrectly maps port 1.2 to

(CED) port 4.5 Chiefly Scot. a gate or portal in a town or fortress.

which, like the correct sense, contains a connection through town, but port 4.5 is favored because in

addition, fortress is highly connected to city.

In the second failure, the definitions that should match are:

(OALD) port 2 Naut. opening in the side of a ship for entrance, or for loading and unloading
cargo.

(CED) port 4.1a Nautical. an opening in the side of a ship, fitted with a watertight door, for
access to the holds.

Instead, the networks selects port 1.1 (see above), because it is misled by the presence of loading

and unloading.

Two observations about these failures can be made:

(1) Our strategy does not take into account indications concerning domain, register, geographic

variants, etc. A refined version of our program should use these indications to select a sense or to

restrict the possibilities for the correct sense. Both of the above failures would be avoided if this

strategy were applied, since in the first case the indication Chiefly Scottish would eliminate port 4.5

as a candidate, and in the second case the domain indication Nautical  (which appears only on sense

4.1 of port) would select the correct sense immediately.

(2) It is apparent in examining our results closely that far greater accuracy can be obtained by

splitting the input definitions into genus and differentiae, which can be accomplished with a simple

procedure (Chodorow, Byrd, and Heidorn, 1985). Currently, we treat all of the words in the input
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definition equally, and thus the words at the end of the definition have exactly the same impact as the

words at the beginning. We could, instead, adopt a two-step stategy in which the genus term is

mapped first and, where necessary, further discriminated in a second run of the network with the

differentiae. Such a strategy would also eliminate both failures for port, since the genus term is

identical in the correctly mapped senses in each case. This strategy should work even in cases where

the genus terms in the input and target senses are not identical, since they must be very closely

related semantically and should therefore be identified by the network.

The other incorrect mappings in our study involve cases where the wrong sense is selected within

the right homograph. For example,

(OALD) ash 1a forest tree with silver-grey bark and hard, tough wood.

maps to

(CED) ash 2.2 the close-grained durable wood of any of these trees, used for tool handles, etc.

instead of

(CED) ash 2.1 any oleaceous tree of the genus Fraxinus, esp. F. excelsior of Europe and Asia,
having compound leaves, clusters of small greenish flowers, and winged seeds.

Ash 2.2 is selected simply because it shares more words (wood and tree) with the OALD ash 1a.

Again, a strategy which takes into account the genus/differentiae structure of the input definition

would correct this failure because of the overlap in the genus term in the OALD ash 1a and the

CED ash 2.1..

Several other improvements to our model suggest themselves. As noted above, we iterate the process

of building word-to-sense-to-word links two times in our current implementation. The results may

be improved with additional iterations or with a single network covering the entire dictionary. Also,

because the parameters used in these experiments are a first approximation, we are experimenting

with network parameters such as the amount of feedback or inhibition, etc., to see what effect such

changes could have on the results. Experiments with neural networks similar to ours show that such

networks are extremely sensitive to tuning of this kind. Also, in our current model, all sense nodes

for all homographs of a given word are attached directly to its word node, and therefore they are all

mutually inhibited. Instead, senses within the same homograph (which are semantically related)

should inhibit each other less than senses between different homographs (which are not

semantically related). Therefore, we may see some improvement in the results if the model is

modified to add intermediary nodes accounting for different homographs, as well as for subsenses,

leading to a more complex, hierarchical unit for each word. Finally, we are beginning to explore

means to vary weights on links within the network, on the basis of information extracted from other
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sources concerning frequency, part of speech, collocations, synonomy, etc., and semantic

information extracted from the definition texts themselves.

As noted above, many-to-one mappings are simply one-to-one mappings where several senses map

to the same sense in the target dictionary, and therefore they are handled by the strategy we have

outlined here. It should be further noted that one-to-many mappings from dictionary A to dictionary

B are just the reverse of many-to-one mappings from B to A. Therefore, we can handle one-to-many

mappings from the OALD to the CED by constructing the network with the OALD, and activating it

with definitions from the CED. However, with slight changes to our model it should be possible to

handle one-to-many mappings directly. By reducing the inhibition between senses associated with

the words in the network, it would be possible to activate more than one sense at the end of a

network run. In this way, multiple associations could be revealed, and their relative strengths could

be considered.

 5. Conclusion

Although our model is only preliminary, the results are promising and improve on the results

obtained with Lesk-based strategies. Like Lesk's method, the spreading activation strategy works

well when common words appear in corresponding definitions. However, it is also successful in

cases when no overlapping words are present and when the same number of overlaps exist with

more than one sense definition, since additional, more remote relations are identified.

More generally, our results provide some positive evidence in the debate over whether the enormous

body of lexical knowledge encoded in dictionaries can be exploited for natural language processing.

The success of our method for both sense mapping and word sense disambiguation shows, more

decisively than the work of Lesk and others working in the same paradigm, that the structure of

dictionary definitions themselves provides usable semantic information about the relatedness of

words. Further, our results give some evidence that the spreading activation strategy is one means to

exploit the full potential of relations implicitly encoded in machine-readable dictionaries.
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