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Modelling Lexical Databases

Nancy Ide and Jean Véronis

1. Introduction

There exists a substantial body of research demonstrating that machine readable dictionaries are a

rich source of ready-made lexical and semantic information which can be used in natural language

processing (for example, Amsler, 1980; Calzolari, 1984; Markowitz, Ahlswede, and Evens, 1986;

Byrd et al. 1987; Nakamura and Nagao 1988; Véronis and Ide 1990; Klavans, Chodorow, and

Wacholder 1990; Wilks et al. 1990). Much of this research involves the creation of lexical databases

from original dictionary data, in order to facilitate retrieval and analysis.

At the same time, as lexical databases have proliferated in multiple formats, there has been

growing concern over the reusability of lexical resources. The interchange and integration of data, as

well as the development of common software, is increasingly important to avoid duplication of effort

and enable the development of large-scale databases of linguistic information (which is the concern of

projects such as ACQUILEX, GENELEX, EDR, etc.).

However, lexical data is much more complex than the kind of data (suppliers and parts,

employees' records, etc.) that has provided the impetus for most database research. Therefore,

classical data models (e.g., relational) do not apply well to lexical data, and, as a result, current lexical

databases exist in a wide variety of (often ad hoc) formats. To date, no fully suitable data model for

lexical databases has been proposed.

In this paper, we provide a data model based on feature structures that overcomes most of the

problems inherent in classical database models, and, in particular, provides a common representation

despite possibly extreme variation in the structures of the original dictionaries. The model we propose

allows retaining the particular organization of a given dictionary, while at the same time making it

invisible to certain retrieval operations.

The choice of features structures to represent dictionaries is motivated by their use in the field of

computational linguistics, in particular to represent computational lexicons. Their use in lexical data



bases seems therefore natural. However, the application of feature strucutures to dictionaries is not

entirely straightforward. Computational lexicons, as their name implies, are created specifically for use

by computer programs, and generally have a regular and relatively simple structure (even though the

information in them is sometimes complex) like that of a data base. On the other hand, lexical data

bases are based on original, printed dictionaries, which were not intended for use by computer

programs but rather for human readers, and therefore constitute highly complex structured texts.

This paper makes a link between computational lexicons and dictionaries, showing how the same

type of representation can be utilized for both. A common representation is certainly desirable, since

one of the fundamental goals of creating lexical data bases is to assist in the creation of computational

lexicons.  Our research also has interesting repercussions for the theory of feature structures, since it

shows (1) how features structures can be extended to handle the represetnation of structured texts,

and (2) that feature structures can be a powerful model for data bases in general.

2. Previous Models

The classical relational model has been proposed to represent dictionaries (Nakamura and Nagao

1988). However, as Neff, Byrd, and Rizk 1988, point out, the relational model cannot capture the

obvious hierarchy in most dictionary entries. For example, the entry for abandon in Fig. 1 has two

main sub-parts, one for its verb senses and one for its noun sense, and the two senses of the verb

labeled '1' in Fig. 1 are in fact two sub-senses of the first sense given in the entry. These two sub-

senses are more closely related to each other than to senses 2, 3, and 4, but the tabular format of

relational models obscures this fact.

Neff, Byrd, and Rizk describe a lexical database (the IBM LDB) based on an unnormalized (also

Non First Normal Form or NF2) relational data model, in which attribute values may be nested

relations with their own internal structure (see Abiteboul and Bidoit 1984; Roth et al. 1988). Fig. 2

shows the LDOCE entry for abandon represented in a NF2 model. The outermost table consists of a

relation between a headword and some number of homographs. In turn, a homograph consists of a

part of speech, a grammar code, and some number of senses, etc. Obviously, this model better



captures the hierarchical structure of information in the dictionary and enables the factoring of

attributes.

Although NF2 models clearly improve on other models for representing dictionary information, a

number of problems, outlined in the following sub-sections, still remain.

--- Fig. 1 near here ---

2.1 Recursive Nesting

Some dictionaries take the grouping and nesting of senses several levels deep in order to distinguish

finer and finer grains of meaning. The Hachette Zyzomys CD-ROM dictionary, for instance,

distinguishes up to five levels in an entry (Fig. 3).

 --- Fig. 3 near here ---

NF2 models explicitly prohibit recursive embedding of relations. Therefore, the only way to

represent the recursive nesting of senses is through the proliferation of attributes such as

SENSE_LEVEL1, SENSE_LEVEL2, etc. to represent the different levels. This in turn demands that queries

take into account all the possible positions where a given sub-attribute (e.g., usage) could appear. For

example, mulitple queries are required to retrieve all nouns which have an archaic (Vx = vieux) sense.

Since any sense at any level could have this attribute value, it is necessary to query each level.

2.2 Exceptions

Exceptional cases are characteristic of lexical data. For instance, sense 3 of the word 'conjure' in the

OALD has a pronunciation different from the other senses in the entry, and the entry 'heave' in the

CED shows that inflected forms may apply to individual senses--in this case, the past tense and past

participle is 'heaved' for all but the nautical senses, for which it is 'hove' (Fig. 4).

--- Fig. 2 near here ---



--- Fig. 4 near here ---

Allowing the same attribute at different levels, in different nested relations (for example, allowing

a pronunciation attribute at both the homograph and sense levels) would require a mechanism to

'override' an attribute value at an inner level of nesting. NF2 models do not provide any such

mechanism and, in fact, do not allow the same attribute to appear at different levels. If any attribute can

appear in any nested relation, the model becomes ill-defined since the very notion of hierarchy upon

which it relies is undermined. Therefore, the only way exceptions could be handled in an NF2 model

would be by re-defining the template so that attributes such as pronunciation, inflected forms,

etymology, etc., are associated with senses rather than homographs. However, this would disable the

factoring of this information, which applies to the entire entry in the vast majority of cases.

2.3 Variable factoring

Dictionaries obviously differ considerably in their physical layout. For example, in one dictionary, all

senses of a given orthographic form with the same etymology will be grouped in a single entry,

regardless of part of speech; whereas in another, different entries for the same orthographic form are

given if the part of speech is different. The CED, for instance, has only one entry for abandon,

including both the noun and verb forms, but the LDOCE gives two entries for abandon, one for each

part of speech. As a result of these differences, the IBM LDB template for the LDOCE places the part

of speech attribute at the homograph level, whereas in the CED template, part of speech must be given

at the level of sense (or 'sense group' if some new attribute were defined to group senses with the

same part of speech within an entry). This means that the query for part of speech in the LDOCE is

completely different from that for the CED. Further, it means that the merging or comparison of

information from different dictionaries demands complete (and possibly complex) de-structuring and

re-structuring of the data. This makes data sharing and interchange, as well as the development of

general software for the manipulation of lexical data, difficult.



However, differences in dictionary layout are mainly differences in structural organization,

whereas the fundamental elements of lexical information seem to be constant. In the example above,

for instance, the basic information (orthography, pronuncation, part of speech, etc.) is the same in both

the CED and LDOCE, even if its organization is different.

The only way to have directly compatible databases for different dictionaries in the NF2 model,

even if one assumes that attributes for the same kind of information (e.g., orthography) can have the

same name across databases, is to have a common template across all of them. However, the fixed

factoring of attributes in NF2 models prohibits the creation of a common template, because the

template for a given database mirrors the particular factoring of a single dictionary. Therefore, a more

flexible model is needed that would retain the particular factoring of a given dictionary, and at the

same time render that factoring transparent to certain database operations.

3. A Feature-based Model

We introduce a model for dictionary data based on feature structures. We demonstrate the mapping

between the information found in dictionaries and the feature-based model, and show how the various

characteristics of lexical data, such as recursive nesting of elements, (variable) factoring of

information, and exceptions can be handled using well-developed feature structure mechanisms.

Fig. 5 shows how feature structures can be used to represent simple dictionary entries. We will

consider feature structures as typed  (as defined, for instance, by Pollard and Sag 1987), that is, not all

features can appear anywhere, but instead, they must follow a schema that specifies which features are

allowable  (although not necessarily present), and where. The schema also specifies the domain of

values, atomic or complex, allowed for each of these features. For example, entries are described by

the type ENTRY, in which the features allowed are form, gram, usage, def, etc. The domain of values

for form is feature structures of type FORM, which consists of feature structures whose legal features

include orth, hyph, and pron. Each of these features has, in turn, an atomic value of type STRING, etc.

--- Fig. 5 near here ---



3.1 Value Disjunction and Variants

The use of value disjunction (Karttunen 1984) enables the represention of variants, common in

dictionary entries, as shown in Fig. 6. We have added an extension which allows the specification of

either a set (noted {x  1  , … x  n  }) or a list (noted (x  1  , … x  n  )) of possible values. This enables retaining

the order of values, which is in many cases important in dictionaries. For example, the orthographic

form given first is most likely the most common or preferred form. Other information, such as

grammatical codes, may not be ordered.

--- Fig. 6 near here ---

In many cases, sets or lists of alternatives are not single values but instead groups of features.

This is common in dictionaries; for instance, Fig. 7 shows a typical example where the alternatives are

groups consisting of orthography and pronunciation.

--- Fig. 7 near here ---

3.2 General Disjunction and Factoring

General disjunction (Kay 1985) provides a means to specify alternative sub-parts of a feature

structure. Again, we have extended the mechanism to enable the specification of both sets and lists of

sub-parts. Therefore, feature structures can be described as being of the form [φ  1  , … φ  n  ], where each

φ  i   is a feature-value pair f: ψ, a set of feature structures {ψ  1  , … ψ  p  }, or a list of feature structures

(ψ  1  , … ψ  p  ).

General disjunction allows common parts of components to be factored. Without any

disjunction, two different representations for the entry for hospitaller  from the CED are required. The

use of value disjunction enables localizing the problem and thus eliminates some of the redundancy,



but only general disjunction (Fig. 8) captures the obvious factoring and represents the entry cleanly

and without redundancy.

--- Fig. 8 near here ---

General disjunction provides a means to represent multiple senses, since they can be seen as

alternatives (Fig. 9).1

Sense nesting is also easily represented using this mechanism. Fig. 10 shows the representation

for abandon given previously. At the outermost level of the feature structure, there is a disjunction

between the two different parts of speech (which appear in two separate entries in the LDOCE). The

disjunction enables the factoring of orthography, pronunciation, and hyphenation over both

homographs. Within the first component of the disjunction, the different senses for the verb comprise

an embedded list of disjuncts.

--- Fig. 9 near here ---

An important characteristic of this model is that there is no different type of feature structure for

entries, homographs, or senses. This captures what appears to be a  fundamental property of lexical

data, that is, that the different levels (entries, homographs, senses) are associated with the same kinds

of information. Previous models have treated these different levels as different objects, associated wtih

different kinds of information, which obscures the more fundamental structure of the information.  

Note that we restrict the form of feature structures in our model to a hierarchical normal form.

That is, in any feature structure F = [φ  1  , … φ  n  ], only one φ  i  , let us say φ  n   = {ψ  1  , … ψ  p  }, is a

disjunction. This restriction is applied recursively to embedded feature structures. This scheme

enables representing a feature structure as a tree in which factored information [φ  1  , … φ  n-1  ] at a given

                                                

1Note that in our examples, "//" signals the beginning of a comment which is not part of the feature

structure. We have not included the sense number as a feature in our examples because sense

numbers can be automatically generated.



level is associated with a node, and branches from that node correspond to the disjuncts ψ  1  , … ψ  p  .

Information associated with a node applies to the whole sub-tree rooted at that node. For example, the

tree in Fig. 11 represents the feature structure for abandon given in Fig. 10. The representation of

information as a tree of feature structures, where each node represents a level of hierarchy in the

dictionary, reflects structure and factoring of information in dictionaries and captures the fundamental

similarity among levels cited above.

3.3 Disjunctive Normal Form and Equivalence

It is possible to define an unfactor operator to multiply out the terms of alternatives in a general

disjunction (Fig. 12), assuming that no feature appears at both a higher level and inside a disjunct.2

By applying the unfactor operator recursively, it is possible to eliminate all disjunctions except at

the top level. The resulting (extremely redundant) structure is called the disjunctive normal form

(DNF). We say that two feature structures are DNF-equivalent if they have the same DNF. The fact

that the same DNF may have two or more equivalent factorings enables the representation of different

factorings in dictionaries, while retaining a means to recognize their equivalence.  Fig. 13a shows the

factoring for inflected forms of alumnus in the CED; the same information could have been factored

as it appears in Fig. 13b. Note that we have used sets and not lists in Fig. 13. Strictly speaking, the

corresponding feature structures with lists would not have the same DNFs. However, since it is trivial

to convert lists into sets, it is easy to define a stronger version of DNF-equivalence that disregards

order.

--- Fig. 10 near here ---

--- Fig. 11 near here ---

                                                

2Value disjunction is not affected by the unfactor process. However, a value disjunction [f: {a, b}] can

be converted to a general disjunction [{[f: a], [f: b]}], and subsequently unfactored.



--- Fig. 12 near here ---



We can also define a factor operator to apply to a group of disjuncts, in order to factor out

common information. Information can be unfactored and re-factored in a different format without loss

of information, thus enabling various presentations of the same information, which may, in turn,

correspond to different printed renderings or 'views' of the data.

--- Fig. 13 near here ---

3.4 Partial Factoring

The type of factoring described above does not handle the example in Fig. 14, where only a part of the

grammatical information is factored (pos and subc, but not gcode). We can allow a given feature to

appear at both the factored level and inside the disjunct, as long as the two values for that feature are

compatible. In that case, unfactoring involves taking the unification of the factored information and the

information in the disjunct.

--- Fig. 14 near here ---

3.5 Exceptions and Overriding

We saw in the previous section that compatible information can appear at various levels in a

disjunction. Exceptions in dictionaries will be handled by allowing incompatible information to appear

at different levels. When this is the case, unfactoring will be defined to retain only the information at

the innermost level. In this way, a value specified at the outer level is overridden by a value specified

for the same feature at an inner level. For example, Fig. 15 shows the factored entry for conjure, in

which the pronunciation specified at the outermost level applies to all senses except sense 3, where it

is overriden.

--- Fig. 15 near here ---



3.6 Implementation

Feature-based systems developed so far are designed for parsing natural language and are not

intended to be used as general DBMSs. Therefore, they typically do not provide even standard

database operations. They are furthermore usually restricted to handle only a few hundred grammar

rules, and so even the largest systems are incapable of dealing with the large amounts of data that

would be required for a dictionary.

In Ide, Le Maitre, Véronis (1993), we describe an object-oriented implementation which provides

the required expressiveness and flexibility. We show how the feature-based model can be

implemented in an object-oriented DBMS, and demonstrate that feature structures map readily to an

object-oriented data model. However, our work suggests that the development of a feature-based

DBMS, including built-in mechnisms for disjunction, unification, generalization, etc., is desirable.

Such feature-based DBMSs could have applications far beyond the representation of lexical data.

4. Conclusion

In this paper we show that previously applied data models are inadequate for lexical databases. In

particular, we show that relational data models, including normalized models which allow the nesting

of attributes, cannot capture the structural properties of lexical information. We propose an alternative

feature-based model for lexical databases, which departs from previously proposed models in

significant ways. In particular, it allows for a full representation of sense nesting and defines an

inheritance mechanism that enables the elimination of redundant information. The model provides a

flexibility which seems able to handle the varying structures of different monolingual dictionaries.  
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