
Bridging the gaps: interoperability for language
engineering architectures using GrAF

Nancy Ide • Keith Suderman

Published online: 18 March 2012

� Springer Science+Business Media B.V. 2012

Abstract This paper explores interoperability for data represented using the Graph

Annotation Framework (GrAF) (Ide and Suderman, 2007) and the data formats

utilized by two general-purpose annotation systems: the General Architecture for

Text Engineering (GATE) (Cunningham et al., 2002) and the Unstructured Infor-

mation Management Architecture (UIMA) (Ferrucci and Lally in Nat Lang Eng

10(3–4):327–348, 2004). GrAF is intended to serve as a ‘‘pivot’’ to enable inter-

operability among different formats, and both GATE and UIMA are at least

implicitly designed with an eye toward interoperability with other formats and tools.

We describe the steps required to perform a round-trip rendering from GrAF to

GATE and GrAF to UIMA CAS and back again, and outline the commonalities as

well as the differences and gaps that came to light in the process.

Keywords Linguistic annotation � Standards � Language resources �
Annotation processing software

1 Introduction

Linguistically annotated corpora are required to develop sophisticated language

models that can be used to improve natural language understanding capabilities. It has

long been recognized that resource creation is time-consuming and costly, and there

have been consistent calls within the field for resource reusability to offset some of

those costs. One very basic requirement for reusability of linguistic annotations is their

representation in a format that is processable by different software programs. While

this could be accomplished by universal adoption of a single standard format for

linguistic corpora and annotations, there is growing recognition that interoperability

N. Ide (&) � K. Suderman

Department of Computer Science, Vassar College, Poughkeepsie, NY, USA

e-mail: ide@cs.vassar.edu

123

Lang Resources & Evaluation (2012) 46:75–89

DOI 10.1007/s10579-011-9175-7



among formats, rather than universal use of a single representation format, is more

suited to the needs of the community and language technology research in general.

Interoperability is achieved when there is conversion transitivity between formats, as

defined in Ide and Bunt (2010); that is, when transduction from one format to another

can be accomplished automatically without information loss.

This paper explores interoperability for data represented using the Graph

Annotation Format (GrAF) (Ide and Suderman 2007) and the data formats utilized

by two general-purpose annotation systems: the General Architecture for Text

Engineering (GATE) (Cunningham et al. 2002) and the Unstructured Information

Management Architecture (UIMA) (Ferrucci and Lally 2004). GrAF is an XML

format for representing language data and standoff annotations that was developed

in ISO TC37 SC4 as a part of the Linguistic Annotation Framework (LAF) (Ide and

Romary 2004). GrAF is intended to serve as a ‘‘pivot’’ in order to facilitate

interoperability among different formats for data and linguistics annotations and the

systems that create and exploit them. UIMA and GATE are commonly-used

frameworks that enable users to define pipelines of prefabricated software

components that annotate language data, each of which uses a different internal

representation for annotations over data. For GrAF to serve as a liaison between

these two systems, conversion transitivity must hold between these internal formats

and GrAF. In this paper, we first provide a general overview of GrAF and then

describe the steps required to perform a round-trip rendering from GrAF to GATE

and GrAF to UIMA and back again, and outline the commonalities as well as the

differences and gaps that came to light in the process. In doing so, we hope to shed

some light on the design and implementation choices that either contribute to or

impede progress toward interoperability, which can in turn feed future development.

2 Background

GrAF has been developed by the International Standards Organization (ISO)’s TC37

SC4, as a part of the Linguistic Annotation Framework (LAF) (ISO 2008). GrAF is the

XML serialization of the LAF abstract model, which is consists of a generic graph

decorated with feature structures. GrAF is intended to serve primarily as a ‘‘pivot’’ for

transducing among user-defined and tool input formats. As such, GrAF functions in

much the same way as an interlingua in machine translation: as a common, abstract

representation into and out of which user- and tool-specific formats are transduced, so

that a transduction of any specific format into and out of GrAF accomplishes the

transduction between it and any number of other GrAF-conformant formats. Figure 1

shows the overall idea for six different user annotation formats (labeled A to F), which

requires only two mappings for each scheme – one into and one out of the GrAF pivot

format. The maximum number of mappings among schemes is therefore 2n, versus

n2 - n mutual mappings without the pivot. GrAF is currently an ISO Candidate Draft.

Two of the most commonly-used platforms for generating automatic and manual

annotations for language data are GATE (Cunningham et al. 2002; Bontcheva et al.

2004) and UIMA (Ferrucci and Lally 2004). Each of these systems uses a different

model for representing data internally as well as for ‘‘dumping’’ these representations

76 N. Ide, K. Suderman

123



in a system-specific XML-based format. Given the widespread use of these two

systems, means to transduce annotations from one representation to the other is

desirable. We describe below the internal model used by each of these systems, and

then go on in the next sections to consider transducing GATE-produced annotations to

UIMA format and vice versa, using GrAF as the intermediary.

2.1 GATE and annotation graphs

GATE (Cunningham et al. 2002; Bontcheva et al. 2004) is an infrastructure for

language processing developed at the University of Sheffield, first introduced in

1996. GATE uses a modified form of the representation format developed in the

TIPSTER project (Grishman 1997), later formalized as Annotation Graphs (AG)

(Bird and Liberman 2001). Annotation Graphs were introduced primarily as a

means to handle time-stamped speech data, in large part to overcome the problem of

overlapping annotations that violate the strict tree structure of XML-based schemes.

The AG model consists of sets of arcs defined over nodes corresponding to

timestamps in primary data, each of which is labeled with an arbitrary linguistic

description that applies to that region. Formally, an Annotation Graph over a set of

annotation labels L and timeline T is a 3-tuple <N, A, t> , where

• N is a set of nodes,

• A is a set of edges labeled with elements of L, and

• t is partial function from N to T satisfying the following conditions:

1. <N, A> is acyclic, with no nodes of degree zero, and

2. for any path from node n1 to n2, if t(n1) and t(n2) are defined, then

t(n1) B t(n2).

Under this definition, multiple annotations over the data produce multiple arcs; there

is no provision for arcs associating one annotation with another. As a result,

hierarchical structures such as syntax trees are difficult to represent using AGs. An

ad hoc mechanism to represent hierarchy with AGs by including some of the

structural information in arc labels has been developed (Cotton and Bird 2002), but

the resulting structure is not a ‘‘true’’ graph that is, for example, able to be traversed

using standard graph traversal algorithms.

Following the AG Model, vertices of the GATE-internal AG are anchored in the

document content; annotations label the arcs in the graph, each of which has a start

Fig. 1 GrAF as a pivot for six
different annotation formats

Bridging the gaps: interoperability 77

123



node and an end node, an identifier, a type, and a set of simple feature-value pairs

providing the annotation content. Instead of referring to timestamps, nodes have

pointers into the content, e.g. character offsets for text, milliseconds for audio-visual

content, etc. As such, the GATE internal model of annotations, like AGs, does not

allow for associating annotations with other annotations and is therefore limited in

its capacity to represent annotation hierarchies.

2.2 UIMA CAS

The UIMA framework is a data management system that supports pipelined

applications over unstructured data. UIMA was originally developed by IBM and is

currently under further development by an OASIS technical committee.1 Apache

UIMA2 is an Apache-licensed open source implementation of the UIMA specifi-

cation being developed as an Apache incubator project. UIMA’s Common Analysis

System (CAS) is used to describe typed objects (annotations) associated with a given

text or other medium, upon which processing modules (‘‘annotators’’) operate. The

CAS consists of a subject of analysis (sofa), which is the data (in our examples here, a

text) itself, together with its annotations. The CAS XML representation of the

annotations is isomorphic to the GrAF XML representation: each annotation is

identified by its start and end location in the data expressed in terms of virtual nodes

between each character in the data, where the position before the first character is

node 0. As in GrAF, annotation information is expressed using (recursive) feature

structures. UIMA provides mechanisms for specifying an annotation type system and

a set of type priorities, which are described below in Sect. 3.

2.3 LAF

The LAF abstract data model consists of a referential structure for associating stand-

off annotations with primary data instantiated as a directed graph, and a feature

structure representation for annotation content. In the LAF model, an annotation

forms a directed graph referencing n-dimensional regions of primary data as well as

other annotations, in which nodes (and possibly edges) are labeled with feature

structures providing the annotation content. Formally, the LAF data model for

annotations is defined as follows:

A graph of annotations G is a set of vertices V(G) and a set of edges E(G).

Vertices and edges may be labeled with one or more features. A feature consists

of a quadruple ðG0;VE;K;VÞ where, G0 is a graph, VE is a vertex or edge in G0;
K is the name of the feature and V is the feature value. Terminal nodes of the

graph are associated with a set of one or more regions in primary data, which may

provide the base segmentation for an annotation or several layers of annotation.

LAF has adopted the graph model for annotations for several reasons: first, graph

theory provides a well-understood model for representing objects that can be viewed

1 http://www.oasis-open.org/committees/uima/.
2 http://incubator.apache.org/uima/index.html.

78 N. Ide, K. Suderman

123

http://www.oasis-open.org/committees/uima/
http://incubator.apache.org/uima/index.html


as a connected set of more elementary sub-objects, together with a wealth of graph-

analytic algorithms for information extraction and analysis. As a result, the generic

graph model has recently gained ground as a natural and flexible model for linguistic

annotations that can represent all annotation varieties, even those that were not

originally designed with the graph model as a basis (see for example Ide and

Suderman 2007). Trees, which are restricted graphs, have long been used to describe

syntactic annotations. As noted above, Annotation Graphs use multiple graphs over

primary data to define data regions associated with annotations. More recently, the

Penn Discourse TreeBank released its annotations of the Penn TreeBank as a graph,

accompanied by an API that provides a set of standard graph-handling functions for

query and access, and there is an increasing amount of work that treats linguistic

annotations as graphs in order to identify, for example, measures of semantic

similarity based on common subgraphs (for example, Cui et al. 2005; Bunescu and

Mooney 2007; Nguyen et al. 2007; Gabrilovich and Markovitch 2007).

2.4 GrAF

A GrAF document represents the referential structure of an annotation with two XML

elements: <node> and <edge>. Both <node> and <edge> elements may be labeled

with associated annotation information. According to the LAF specification, an

annotation is itself a graph representing a feature structure. In GrAF, feature structures

are encoded in XML according to the specifications of ISO TC37 SC4 document ISO

24610. Note that the ISO specifications implement the full power of feature structures

and define inheritance, unification, and subsumption mechanisms over the structures,

thus enabling the representation of linguistic information at any level of complexity.

The specifications also provide a concise format for representing simple feature-value

pairs that suffices to represent many annotations, and which, because it is sufficient to

represent the vast majority of annotation information, we use in our examples.

Annotations in the form of feature structures are associated with nodes in the

graph, including nodes associated with both regions and other annotations, via edges

in the graph. GrAF can represent common annotation types such as hierarchical

syntax trees by allowing, for example, a sentence annotation to have edges to

constituent annotations such as NP, VP, etc. As opposed to AGs, annotations

typically label nodes rather than edges in GrAF, although labeled edges are allowed,

and the information comprising the annotations is represented using feature

structures rather than simple labels.

Annotations may also be associated with <edge> elements, but this information

is typically not an annotation per se, but rather information concerning the meaning,

or role, of the link itself. For example, in PropBank, when there is more than one

target of an annotation (i.e., a node containing an annotation has two or more

outgoing edges), the targets may be either co-referents or a split argument whose

constituents are not contiguous, in which case the edges collect an ordered list of

constituents. In other cases, the outgoing edges may point to a set of alternatives. To

differentiate the role of edges in such cases, the edge may be annotated. Unlabeled

edges default to pointing to an ordered list of constituents.

Bridging the gaps: interoperability 79

123



A base segmentation is an annotation that contains only <region> elements

(i.e., nodes with no outgoing edges). It is possible to define multiple base segmentations

over the same data, where desired; each annotation is associated with one and only one

base segmentation. GrAF defines regions in primary data as the area bounded by two or

more anchors, which are first-class objects in the model. The definition of anchor and the

number of anchors needed to define a region depends on the medium being annotated.

The only assumption that GrAF makes is that anchors have a natural ordering. For textual

data, GrAF uses character offsets for anchors, and two anchors bound each region.

3 GrAF ? UIMA ? GrAF

Conversion of a GrAF data structure into UIMA involves generating (1) a UIMA

data structure (a CAS), (2) a UIMA type system, and a specification of type
priorities. In principle, because they are based on the same model, annotations

represented in GrAF and UIMA CAS are trivially mappable to one another. This is

true in terms of the model, but there are a few details of the UIMA-internal

implementation that require some additional steps.

3.1 UIMA type systems

A UIMA type system specifies the type of data that can be manipulated by annotator

components. A type system defines two kinds of objects; types and features. The

type defines the kinds of data that can be manipulated in a CAS, arranged in an

inheritance hierarchy. A feature defines a field, or slot, within a type. Each CAS

type specifies a single supertype and a list of features that may be associated with

that type. A type inherits all of the features from its supertype, so the features that

can be associated with a type is the union of all features defined by all supertypes in

the inheritance tree. A feature is a name/value pair where the value can be one of

UIMA’s built in primitive types (boolean, char, int, etc.) or a reference to another

UIMA object. UIMA also allows feature values to be arrays of either primitive types

or arrays of references to other objects.

UIMA defines a top level type uima.cas.TOP which contains no features and serves

as the root of the UIMA type system inheritance tree. The root type uima.cas.TOP is

the supertype of uima.cas.AnnotationBase, which is the supertype of uima.tcas.Anno-
tation, which in turn is the supertype for org.xces.graf.uima.Annotation. All UIMA

annotations generated by GrAF use org.xces.graf.uima.Annotation as their supertype.

Note that the UIMA type hierarchy is strictly an is-a hierarchy; for example, there may

be an annotation type pos with subtypes penn_pos, claws_pos, etc., indicating that

each of these annotations are a kind of part of speech annotation. The hierarchy does

not reflect other kinds of relations such as the relation between a ‘‘lemma’’ annotation

and a ‘‘pos‘‘ annotation (i.e., a lemma and a pos are typically companion parts of a

morpho-syntactic description, but neither one is a morpho-syntactic description), or

constituency relations in syntactic annotation schemes.

The GrAF Java API provides a Java class that generates a valid UIMA type

system given one or more GrAF objects. The type system is generated by

80 N. Ide, K. Suderman

123



performing a depth-first traversal of all the nodes in the graph and creating a new

type for each kind of annotation encountered (e.g., token, sentence, POS, etc.).

Feature descriptions are generated for each type at the same time.

One drawback of deriving a type system automatically is that some of the power of

UIMA type systems is lost in the conversion. For example, in the process of

conversion, all feature values are assumed to be strings, even though UIMA allows

specification of the type of a feature value. Since in GrAF, feature values have been

serialized from the contents of an XML attribute, all feature values are represented

internally as strings; to convert a feature value to any other representation would

require that GrAF have some external knowledge of the annotation format being

deserialized. Therefore, any type checking capability for feature value types in UIMA

is lost after automatic generation of the type system. Similarly, it is not possible to

determine a supertype for an annotation if it is more specific than org.xces.graf.
uima.Annotation from the information in the GrAF representation alone, so in effect, it

is not possible to derive any meaningful type hierarchy without additional knowledge.

For example, it is not possible to include the information in the type system description

that penn_pos and claws_pos are subtypes of pos since this information is not

represented in the graph. Even in cases where this kind of information is represented in

the graph, it is not retrievable; for example, FrameNet annotation includes a

grammaticalFunction annotation whose children are elements such as subject,

object, etc. However, there is no way to determine what the parent-child relation is

between nodes without a priori knowledge of the annotation scheme.

Without a source of external knowledge, GrAF does not attempt to make any

assumptions about the annotations and features in the graph. However, all of these

problems are avoided by providing an XML Schema or other source of information

about the GrAF annotations that can be used when generating the type system. The

XML schema can specify the type hierarchy, data types and restricted ranges for

feature values, etc. [see, for example, the XCES (Ide et al. 2000) schema used for

the data and annotations in the American National Corpus (ANC)3].

3.2 UIMA views and indexes

A UIMA CAS object may contain more than one view of the artifact being

annotated; for example, a CAS may contain an audio stream as one view and the

transcribed text as another. Each view contains a copy of the artifact, referred to as

the subject of analysis (sofa), and a set of indexes that UIMA annotators (processing

modules) use to access data in the CAS. Each index is associated with one CAS type

and indexes that type by its features—that is, the features are the keys for the index.

The indexes are the only way for UIMA annotators to access annotations in the

CAS. It is necessary to generate these indexes, which are not provided automatically

within UIMA. The GrAF Java API provides a module that generates the indexes at

the same time that it generates the type system description. Since we do not know,

and make no assumptions about, which annotations might be required by other

annotators, all annotations are indexed by all of their features.

3 http://www.anc.org.

Bridging the gaps: interoperability 81

123

http://www.anc.org


3.3 Type priorities

Type priorities in UIMA are used to determine nesting relations when iterating over

collections of annotations. That is, if two annotations have the same start and end

offsets, then the order in which they will be presented by an iterator is determined

by their type priority; the annotation with the highest priority will be presented first.

Type priorities are specified by an ordered listing of annotation types, where order

determines priority. In GrAF, annotation nesting is implicit in the graph itself.

To generate an explicit type priority specification for UIMA we must first obtain

a list of all annotation types that appear in the graph and then sort the list based on

the order they are encountered during a a depth first traversal of the graph. During

the depth first traversal a N 9 N precedence matrix is constructed where N is the

number of annotation types in the graph. If precedes[A,B] == true then A was

encountered as an ancestor of B in the depth first traversal. If precedes[A,B] ==

precedes[B,A] == true then it is assumed that the annotation types have the same

priority. Once the list of annotation types has been collected and the precedence

matrix constructed, the matrix can be used to to sort the annotation types.

Not all nodes in the graph may be reachable in a depth first traversal, particularly

if multiple annotations formats have been merged together. Therefore, after the

initial traversal has been completed each node is checked to determine if it has been

visited. If not, then another traversal is started from that node. This is repeated until

all nodes/annotations in the graph have been visited at least once.

We have found that UIMA type priorities impose some limitations because they

cannot represent context sensitive annotation orderings. For example, given

\!ELEMENT E1 (A,B) [
\!ELEMENT E2 (B,A) [

The order of A and B differs depending on whether the parent annotation is E1 or E2.

This type of relationship cannot be expressed by a simple ordering of annotations.

3.4 Naming conflicts

The annotation type names used when generating the UIMA type system are derived

automatically based on the annotation names used in the graph. Annotations in

GrAF may also be grouped into named annotation sets, and the generated UIMA

type name consists of a concatenation of the nested annotation set names with the

annotation label appended. For example, multiple part of speech annotations may be

represented in different annotation sets, as shown in Fig. 2.

For the above example, two types will be generated: POS_token_PENN and

POS_token_CLAWS5. However, GrAF places no restrictions on the names used for

annotation set names, annotation labels, or feature structure types. Therefore, it is

possible that the derived type name is not a valid UIMA identifier, which are

required to follow Java naming conventions. For example, Part-Of-Speech is a

valid name for an annotation label in GrAF, but because of the hyphen it is not a

valid Java identifier and therefore not valid in UIMA.

82 N. Ide, K. Suderman

123



To avoid the naming problem, a derived name is converted into a valid UIMA

identifier before creating the UIMA type description. To permit round trip

engineering, that is, ensuring a GrAF ? UIMA ? GrAF transformation results in

the same GrAF representation as the original, a NameMap file is produced that maps

a generated name to the compatible UIMA name. NameMaps can be used in a

UIMA ? GrAF conversion to ensure the GrAF annotations and annotation sets

created are given the same names as they had in the original GrAF representation.

3.5 Preserving the graph structure

While UIMA does not have any graph-specific functionality, the value of a UIMA

feature can be an array of annotations, or more specifically, an array of references to

other annotations. In this way, annotations can effectively ‘‘point’’ to other

annotations in UIMA. We exploit this capability to preserve the structure of the

original graph in the UIMA representation, by adding two features to each

annotation: graf_children and graf_ancestors. This information can be used

to recreate the GrAF representation, should that ever be desired. It can also be used

by UIMA annotators that have been designed to use and/or manipulate this

information.

Although rarely used, GrAF permits edges in the graph to be annotated in the

same way that nodes are. For UIMA conversion, if a graph contains labeled edges it

must be converted into an equivalent graph without labeled edges. A graph with

labeled edges can be converted into an equivalent graph without labeled edges,

where a node replaces the original edge. To preserve the original graph structure, an

attribute indicating that the node is represented as a a labeled edge in GrAF is

included.

4 GrAF ? GATE ? GrAF

The conversion to/from GATE is much simpler than conversion to UIMA, since

GATE is typeless and does not require the overhead of generating a type system or

type priorities list. While GATE does support annotation schemas, they are optional,

and annotations and features can be created at will. GATE is also much more lenient

on annotation and feature names; names automatically generated by GrAF are

typically valid in GATE.

Fig. 2 GrAF representation of
alternative POS annotations

Bridging the gaps: interoperability 83

123



Representing the graph structure in GATE is not as straightforward as it is in

UIMA. We have developed a plugin for GATE that loads GrAF standoff

annotations into GATE, and a parallel plugin that generates GrAF from GATE’s

internal format. As noted above, GATE uses annotation graphs to represent

annotations, However, because annotation graphs do not provide for annotations of

annotations, to transduce from GrAF to the GATE internal format it is necessary to

‘‘flatten’’ the graph so that nodes with edges to other nodes are modified to contain

edges directly into the primary data. GATE assigns a unique id value to every

annotation, so it is possible to link annotations by creating a special feature and

referencing the parent/child annotations by their GATE id values.

The greatest difficulty in a GrAF ? GATE conversion arises from the fact that in

GATE, every annotation is expected to have a start and end pointer into the

document content, and annotations are independent layers linked to the primary

data. In GrAF, annotations can be directly linked to other annotations, and a node

may have multiple edges to other nodes that cover (possibly) disjoint regions of text.

For example, the FrameNet4 annotation for a given verb typically includes edges to

the associated role fillers (e.g., agent, theme, instrument, etc.), each of which is an

annotation itself, and all of which are rarely contiguous in the document. While it is

always possible to ‘‘flatten‘‘ a GrAF representation so that it can be represented in

GATE’s internal model, it is not possible to take the round trip back into GrAF

without losing information about relations among annotations, unless special

metadata is provided on the edges. Our current solution to this problem is to give a

start and end offset that covers the smallest region of the text covering the regions

associated with all descendants of the annotation, and to record the information

concerning the original graph structure in attributes to enable reconversion into the

original GrAF representation. This solution is roughly similar to the ad hoc strategy

used to enable AGs to represent hierarchy.

5 Exploiting interoperability

GrAF is intended to serve as the lingua franca for data and annotations used in

processing systems such as GATE and UIMA. As such, it provides a way for users

to take advantage of each framework’s strengths, e.g., UIMAs capabilities for

deploying analysis engines as services that can be run remotely, and GATE’s wide

array of processing resources and capabilities for defining regular expressions over

annotations (JAPE). It should be noted that GATE provides wrappers to allow a

UIMA analysis engine to be used within GATE, and to allow a GATE processing

pipeline to be used within UIMA. To share data and annotations between the two

systems, it is necessary to construct a mapping descriptor to define how to map

annotations between the UIMA CAS and the GATE Document, which operate

similarly to the converters from and to GrAF for data and annotations described

above. However, one advantage of using a GrAF representation as a pivot between

the two systems is that when an annotation schema is used with GrAF data, the

4 http://framenet.icsi.berkeley.edu/.

84 N. Ide, K. Suderman

123

http://framenet.icsi.berkeley.edu/


conversion from GATE to UIMA is more robust, reflecting the true type description

and type priority hierarchies. Plugins for GATE to input and/or output annotations

in GrAF format and a ‘‘CAS Consumer’’ to enable using GrAF annotations in

UIMA are available at http://www.anc.org. We also provide a corpus reader for

importing MASC data and annotations into NLTK.

Using GrAF as a pivot has more general advantages, for example, by allowing

annotations to be imported from and exported to a wide variety of formats, and also

enabling merging annotations from disparate sources into a single annotation graph.

Figure 3 shows a rendering of a Penn Treebank annotation (bracketed format) and a

FrameNet annotation (XML) that have been transduced to GrAF, merged, and then

transduced for use in UIMA. The same data is shown rendered in GATE in Fig. 4.

The two ‘‘views’’ of the data consisting of overlaid annotations for each annotation

type are visible in each rendering. There are multiple possibilities for exploiting and

exploring merged annotations representing a range of annotation types within these

two frameworks. For example, a UIMA analysis engine could be developed to

identify regions annotated by both schemes, or all FrameNet elements that are

annotated as agent and also annotated with Penn Treebank NP-OBJ, etc. In GATE,

JAPE rules could locate patterns in annotations obtained from different sources, or

named entity recognition rules could be enhanced with annotation information from

data annotated in other formats. It would also be possible to compare multiple

Fig. 3 UIMA rendering of GrAF annotations

Bridging the gaps: interoperability 85

123

http://www.anc.org


annotations of the same type, such as different tokenizations, different POS

taggings, etc.

Annotations from different sources (singly or merged in any combination) can

also be converted to several other formats. We provide a web service (Ide et al.

2010b) that allows users to select some or all parts of the Open American National

Corpus (OANC)5 and the Manually Annotated Sub-Corpus (MASC) (Ide et al.

2010a)—both of which are represented using GrAF—and choose among the

available annotations. The service then generates a corpus and annotation ‘‘bundle’’

that is made available to the user for download. The following output formats are

currently available:

1. in-line XML (XCES6), suitable for use with the BNCs XAIRA search and

access interface7 and other XML-aware software;

2. token / part of speech, a common input format for general-purpose concordance

software such as MonoConc8, as well as the Natural Language Toolkit (NLTK)

(Bird et al. 2009);

Fig. 4 GATE rendering of GrAF annotations

5 http://www.anc.org.
6 XML Corpus Encoding Standard, http://www.xces.org.
7 http://xaira.sourceforge.net/.
8 http://www.athel.com/mono.html.

86 N. Ide, K. Suderman

123

http://www.anc.org
http://www.xces.org
http://xaira.sourceforge.net/
http://www.athel.com/mono.html


3. CONLL IOB format, used in the Conference on Natural Language Learning

shared tasks;9

4. Resource Description Format (RDF), for linkage with Semantic Web objects.

We also provide a GrAF Java API10 that can be used to access and manipulate

GrAF annotations directly from Java programs, and render GrAF annotations in a

format suitable for input to other software such as the open source GraphViz11 graph

visualization application.

Finally, because the GrAF format is isomorphic to input to many graph-analytic

tools, existing graph-analytic software can also be exploited to search and

manipulate GrAF annotations. Trivial merging of GrAF-based annotations involves

simply combining the graphs for each annotation, after which graph minimization

algorithms12 can be applied to collapse nodes with edges to common subgraphs to

identify commonly annotated components. Graph-traversal and graph-coloring

algorithms can also be applied in order to identify and generate statistics that could

reveal interactions among linguistic phenomena that may have previously been

difficult to observe. Other graph-analytic algorithms—including common sub-graph

analysis, shortest paths, minimum spanning trees, connectedness, identification of

articulation vertices, topological sort, graph partitioning, etc.—may also prove to be

useful for mining information from a graph of annotations at multiple linguistic

levels.

We are beginning to see possibilities for true interoperability among not only

major frameworks like UIMA and GATE, but also applications with more limited

functionalities as well as in-house formats. This, in turn, opens up the potential to

mix and match among tools for various kinds of processing as appropriate for a

given task. In general, the transduction of legacy schemes such as Penn Treebank

into GrAF greatly facilitates their use in major systems such as UIMA and GATE,

Fig. 5 Conversion capabilities

9 http://ifarm.nl/signll/conll;
10 http://www.anc.org/graf-api.
11 http://www.graphviz.org/.
12 Efficient algorithms for graph merging exist; see, e.g., Habib et al. (2000).

Bridging the gaps: interoperability 87

123

http://ifarm.nl/signll/conll
http://www.anc.org/graf-api
http://www.graphviz.org/


as well as other applications and systems. Figure 5 shows the conversion

capabilities among a few annotations schemes, GrAF, and UIMA and GATE.

All of our conversion tools and GATE plugins are freely available for download

with no restrictions at http://www.anc.org. The UIMA project has received support

to develop a UIMA ? GrAF conversion module, which should be available in the

near future.

6 Conclusion

Consideration of the transduction from a generic, relatively abstract representation

scheme such as GrAF into the formats required for widely adopted frameworks for

creating and analyzing linguistically annotated data has several ramifications for

interoperability. First, it brings to light the kinds of implementation choices that

either contribute to or impede progress toward interoperability, which can feed

future development. Second, our work on converting GrAF to the formats supported

by UIMA and GATE shows that while minor differences exist, the underlying data

models used by the two frameworks are essentially the same, as well as being very

similar to the data model underlying GrAF. This is good news for interoperability,

since it means that there is at least implicit convergence on the data model best

suited for data and annotations; the differences lie primarily in the ways in which

the model is serialized internally and as output by different tools. It also means that

transduction among the various formats is possible without loss of information.

We have shown that a UIMA ? GrAF or GATE ? GrAF conversion is fairly

straightforward; the expressive power of GrAF can easily represent the data models

used by UIMA and GATE. On the other hand, GrAF ? UIMA or GrAF ? GATE

transformations are less straightforward. Both frameworks can represent graphs, but

neither provides a standard representation that other components are guaranteed to

understand. Given that powerful analysis algorithms for data in graphs are well-

established, there may be considerable advantage to using the graph as a general-

purpose format for use within various modules and analytic engines. In any case, the

generality and flexibility of the GrAF representation has already been shown to be

an effective means to exchange linguistic data and annotations that exist in different

formats, as well as a model for development of annotation schemes in the future.

Acknowledgments This work was supported by an IBM UIMA Innovation Award and National
Science Foundation grant INT-0753069.

References

Bird, S., & Liberman, M. (2001). A formal framework for linguistic annotation. Speech Communication,
33(1–2), 23–60.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python (1st ed.). Sebastopol,

CA: O’Reilly Media.

Bontcheva, K., Tablan, V., Maynard, D., & Cunningham, H. (2004). Evolving GATE to meet new

challenges in language engineering. Natural Language Engineering, 10(3–4), 349–373.

88 N. Ide, K. Suderman

123

http://www.anc.org


Bunescu, R. C., & Mooney, R. J. (2007). Extracting relations from text: From word sequences to

dependency paths. In: A. Kao & S. Poteet (Eds.), Text mining and natural language processing (pp.

29–44). Berlin: Springer.

Cotton, S., & Bird, S. (2002). An integrated framework for treebanks and multilayer annotations. In

Proceedings of the Third International Conference on Language Resources and Evaluation.

Cui, H., Sun, R., Li, K., yen Kan, M., & seng Chua, T. (2005). Question answering passage retrieval using

dependency relations. In: SIGIR 2005 (pp. 400–407). New York, NY: ACM Press.

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). GATE: A framework and graphical

development environment for robust nlp tools and applications. In: Proceedings of ACL’02.

Ferrucci, D., & Lally, A. (2004). UIMA: An architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering, 10(3–4),

327–348.

Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using wikipedia-based

explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on artificial
intelligence (pp. 1606–1611).

Grishman, R. (1997). TIPSTER architecture design document version 2.3, technical report, DARPA.

Habib, M., Paul, C., & Viennot, L. (2000). Partition refinement techniques: An interesting algorithmic

tool kit. International Journal of Foundations of Computer Science 175.

Ide, N., & Bunt, H. (2010). Anatomy of annotation schemes: Mapping to GrAF. In: Proceedings of the
Fourth Linguistic Annotation Workshop (pp. 247–255). Uppsala, Sweden: Association for

Computational Linguistics.

Ide, N., & Romary, L. (2004). International standard for a linguistic annotation framework. Journal of
Natural Language Engineering, 10(3–4), 211–225.

Ide, N., & Suderman, K. (2007). GrAF: A graph-based format for linguistic annotations. In: Proceedings
of the linguistic annotation workshop (pp. 1–8). Uppsala, Sweden: Association for Computational

Linguistics.

Ide, N., Bonhomme, P., & Romary, L. (2000). XCES: An XML-based encoding standard for linguistic

corpora. In: Proceedings of the Second International Language Resources and Evaluation
Conference. Paris: European Language Resources Association.

Ide, N., Baker, C., Fellbaum, C., & Passonneau, R. (2010a). The Manually Annotated Sub-Corpus: A

community resource for and by the people. In: Proceedings of the ACL 2010 Conference Short
Papers, Association for Computational Linguistics (pp. 68–73) Uppsala, Sweden.

Ide, N., Suderman, K., & Simms, B. (2010b). ANC2Go: A web application for customized corpus

creation. In: Proceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC). Valletta, Malta: European Language Resources Association.

ISO. (2008). Language resource management—linguistic annotation framework. ISO Document WD

24611.

Nguyen, D. P. T., Matsuo, Y., & Ishizuka, M. (2007). Exploiting syntactic and semantic information for

relation extraction from Wikipedia. In: IJCAI’ 07 Workshop on Text-Mining and Link-Analysis
(TextLink 2007).

Bridging the gaps: interoperability 89

123


	Bridging the gaps: interoperability for language engineering architectures using GrAF
	Abstract
	Introduction
	Background
	GATE and annotation graphs
	UIMA CAS
	LAF
	GrAF

	GrAF rarr UIMA rarr GrAF
	UIMA type systems
	UIMA views and indexes
	Type priorities
	Naming conflicts
	Preserving the graph structure

	GrAF rarr GATE rarr GrAF
	Exploiting interoperability
	Conclusion
	Acknowledgments
	References


