
Noname manuscript No.
(will be inserted by the editor)

Bridging the Gaps

Interoperability for Language Engineering Architectures Using
GrAF

Nancy Ide · Keith Suderman

Received: date / Accepted: date

Abstract This paper explores interoperability for data represented using the Graph

Annotation Framework (GrAF) (Ide and Suderman, 2007) and the data formats uti-

lized by two general-purpose annotation systems: the General Architecture for Text

Engineering (GATE) (Cunningham et al, 2002) and the Unstructured Information

Management Architecture (UIMA) (Ferrucci and Lally, 2004). GrAF is intended to

serve as a “pivot” to enable interoperability among different formats, and both GATE

and UIMA are at least implicitly designed with an eye toward interoperability with

other formats and tools. We describe the steps required to perform a round-trip ren-

dering from GrAF to GATE and GrAF to UIMA CAS and back again, and outline the

commonalities as well as the differences and gaps that came to light in the process.

Keywords Linguistic annotation · Standards · Language resources · Annotation

processing software

1 Introduction

Linguistically annotated corpora are required to develop sophisticated language models

that can be used to improve natural language understanding capabilities. It has long

been recognized that resource creation is time-consuming and costly, and there have

been consistent calls within the field for resource reusability to offset some of those

costs. One very basic requirement for reusability of linguistic annotations is their rep-

resentation in a format that is processable by different software programs. While this

could be accomplished by universal adoption of a single standard format for linguis-

tic corpora and annotations, there is growing recognition that interoperability among

formats, rather than universal use of a single representation format, is more suited to

Nancy Ide
Department of Computer Science, Vassar College
Tel.: +1 845 437 5988
Fax: +1 845 437 7498
E-mail: ide@cs.vassar.edu

Keith Suderman
Department of Computer Science, Vassar College

2

the needs of the community and language technology research in general. Interoper-

ability is achieved when there is conversion transitivity between formats, as defined

in Ide and Bunt (2010); that is, when transduction from one format to another can be

accomplished automatically without information loss.

This paper explores interoperability for data represented using the Graph Annota-

tion Format (GrAF) (Ide and Suderman, 2007) and the data formats utilized by two

general-purpose annotation systems: the General Architecture for Text Engineering

(GATE) (Cunningham et al, 2002) and the Unstructured Information Management

Architecture (UIMA) (Ferrucci and Lally, 2004). GrAF is an XML format for repre-

senting language data and standoff annotations that was developed in ISO TC37 SC4

as a part of the Linguistic Annotation Framework (LAF) (?). GrAF is intended to

serve as a “pivot” in order to facilitate interoperability among different formats for

data and linguistics annotations and the systems that create and exploit them. UIMA

and GATE are commonly-used frameworks that enable users to define pipelines of

prefabricated software components that annotate language data, each of which uses

a different internal representation for annotations over data. For GrAF to serve as a

liaison between these two systems, conversion transitivity must hold between these

internal formats and GrAF. In this paper, we first provide a general overview of GrAF

and then describe the steps required to perform a round-trip rendering from GrAF to

GATE and GrAF to UIMA and back again, and outline the commonalities as well as

the differences and gaps that came to light in the process. In doing so, we hope to

shed some light on the design and implementation choices that either contribute to or

impede progress toward interoperability, which can in turn feed future development.

2 Background

2.1 GrAF

GrAF has been developed by the International Standards Organization (ISO)’s TC37

SC4, as a part of the Linguistic Annotation Framework (LAF) (ISO, 2008). GrAF is

the XML serialization of the LAF abstract model, which is based on a generic, ab-

stract model consisting of a graph decorated with feature structures. GrAF is intended

to serve primarily as a “pivot” for transducing among user-defined and tool input for-

mats. As such, GrAF functions in much the same way as an interlingua in machine

translation: as a common, abstract representation into and out of which user- and

tool-specific formats are transduced, so that a transduction of any specific format into

and out of GrAF accomplishes the transduction between it and any number of other

GrAF-conformant formats. Figure 1 shows the overall idea for six different user anno-

tation formats (labeled A to F), which requires only two mappings for each scheme –

one into and one out of the GrAF pivot format. The maximum number of mappings

among schemes is therefore 2n, vs. n2 − n mutual mappings without the pivot. GrAF

is currently an ISO Candidate Draft.

Two of the most commonly-used platforms for generating automatic and manual

annotations for language data are GATE (Cunningham et al, 2002), (Bontcheva et al,

2004) and UIMA (Ferrucci and Lally, 2004). Each of these systems uses a different

model for representing data internally as well as for “dumping” these representations

in a system-specific XML-based format. Given the widespread use of these two systems,

means to transduce annotations from one representation to the other is desirable. We

3

describe below the internal model used by each of these systems, and then go on in the

next sections to consider transducing GATE-produced annotations to UIMA format

and vice versa, using GrAF as the intermediary.

2.2 GATE and Annotation Graphs

GATE (Cunningham et al, 2002), (Bontcheva et al, 2004) is an infrastructure for lan-

guage processing developed at the University of Sheffield, first introduced in 1996.

GATE uses a modified form of the representation format developed in the TIPSTER

project (Grishman, 1997), later formalized as Annotation Graphs (AG) (Bird and

Liberman, 2001). Annotation Graphs were introduced primarily as a means to handle

time-stamped speech data, in large part to overcome the problem of overlapping an-

notations that violate the strict tree structure of XML-based schemes. The AG model

consists of sets of arcs defined over nodes corresponding to timestamps in primary data,

each of which is labeled with an arbitrary linguistic description that applies to that

region. Formally, an Annotation Graph over a set of annotation labels L and timeline

T is a 3-tuple < N, A, t >, where

– N is a set of nodes,

– A is a set of edges labeled with elements of L, and

– t is partial function from N to T satisfying the following conditions:

1. < N, A > is acyclic, with no nodes of degree zero, and

2. for any path from node n1 to n2, if t(n1) and t(n2) are defined, then t(n1) ≤
t(n2).

Under this definition, multiple annotations over the data produce multiple arcs; there is

no provision for arcs associating one annotation with another. As a result, hierarchical

structures such as syntax trees are difficult to represent using AGs. An ad hoc mecha-

nism to represent hierarchy with AGs by including some of the structural information

in arc labels has been developed (Cotton and Bird, 2002), but the resulting structure

is not a “true” graph that is, for example, able to be traversed using standard graph

traversal algorithms.

Following the AG Model, vertices of the GATE-internal AG are anchored in the

document content; annotations label the arcs in the graph, each of which has a start

node and an end node, an identifier, a type, and a set of simple feature-value pairs pro-

viding the annotation content. Instead of referring to timestamps, nodes have pointers

into the content, e.g. character offsets for text, milliseconds for audio-visual content,

etc. As such, the GATE internal model of annotations, like AGs, does not allow for

associating annotations with other annotations and is therefore limited in its capacity

to represent annotation hierarchies.

2.3 UIMA CAS

The UIMA framework is a data management system that supports pipelined applica-

tions over unstructured data. UIMA was originally developed by IBM and is currently

under further development by an OASIS technical committee1. Apache UIMA2 is an

1 http://www.oasis-open.org/committees/uima/
2 http://incubator.apache.org/uima/index.html

4

Fig. 1 GrAF as a pivot for six different annotation formats

Apache-licensed open source implementation of the UIMA specification being devel-

oped as an Apache incubator project. UIMA’s Common Analysis System (CAS) is used

to describe typed objects (annotations) associated with a given text or other medium,

upon which processing modules (“annotators”) operate. The CAS consists of a subject

of analysis (sofa), which is the data (in our examples here, a text) itself, together with

its annotations. The CAS XML representation of the annotations is isomorphic to the

GrAF XML representation: each annotation is identified by its start and end location

in the data expressed in terms of virtual nodes between each character in the data,

where the position before the first character is node 0. As in GrAF, annotation informa-

tion is expressed using (recursive) feature structures. UIMA provides mechanisms for

specifying an annotation type system and a set of type priorities, which are described

below in section 3.

The LAF abstract data model consists of a referential structure for associating

stand-off annotations with primary data instantiated as a directed graph, and a feature

structure representation for annotation content. In the LAF model, an annotation forms

a directed graph referencing n-dimensional regions of primary data as well as other

annotations, in which nodes (and possibly edges) are labeled with feature structures

providing the annotation content. Formally, the LAF data model for annotations is

defined as follows:

A graph of annotations G is a set of vertices V (G) and a set of edges E(G).

Vertices and edges may be labeled with one or more features. A feature consists

of a quadruple (G′, V E, K, V) where, G′ is a graph, V E is a vertex or edge in

G′, K is the name of the feature and V is the feature value. Terminal nodes

of the graph are associated with a set of one or more regions in primary data,

which may provide the base segmentation for an annotation or several layers of

annotation.

LAF has adopted the graph model for annotations for several reasons: first, graph

theory provides a well-understood model for representing objects that can be viewed

as a connected set of more elementary sub-objects, together with a wealth of graph-

analytic algorithms for information extraction and analysis. As a result, the generic

graph model has recently gained ground as a natural and flexible model for linguistic

annotations that can represent all annotation varieties, even those that were not orig-

inally designed with the graph model as a basis (see for example Ide and Suderman

5

(2007)). Trees, which are restricted graphs, have long been used to describe syntactic

annotations. As noted above, Annotation Graphs use multiple graphs over primary data

to define data regions associated with annotations. More recently, the Penn Discourse

TreeBank released its annotations of the Penn TreeBank as a graph, accompanied by

an API that provides a set of standard graph-handling functions for query and access,

and there is an increasing amount of work that treats linguistic annotations as graphs

in order to identify, for example, measures of semantic similarity based on common

subgraphs (for example, Cui et al (2005); Bunescu and Mooney (2007); Nguyen et al

(2007); Gabrilovich and Markovitch (2007)).

A GrAF document represents the referential structure of an annotation with two

XML elements: <node> and <edge>. Both <node> and <edge> elements may be

labeled with associated annotation information. According to the LAF specification, an

annotation is itself a graph representing a feature structure. In GrAF, feature structures

are encoded in XML according to the specifications of ISO TC37 SC4 document ISO

24610. Note that the ISO specifications implement the full power of feature structures

and define inheritance, unification, and subsumption mechanisms over the structures,

thus enabling the representation of linguistic information at any level of complexity.

The specifications also provide a concise format for representing simple feature-value

pairs that suffices to represent many annotations, and which, because it is sufficient to

represent the vast majority of annotation information, we use in our examples.

<edge> elements may also be labeled (i.e., associated with a feature structure),

but this information is typically not an annotation per se, but rather information

concerning the meaning, or role, of the link itself. For example, in PropBank, when

there is more than one target of an annotation (i.e., a node containing an annotation

has two or more outgoing edges), the targets may be either co-referents or a split

argument whose constituents are not contiguous, in which case the edges collect an

ordered list of constituents. In other cases, the outgoing edges may point to a set of

alternatives. To differentiate the role of edges in such cases, the edge may be annotated.

Unlabeled edges default to pointing to an ordered list of constituents.

A base segmentation is an annotation that contains only <region> elements (i.e.,

nodes with no outgoing edges). It is possible to define multiple base segmentations

over the same data, where desired; each annotation is associated with one and only

one base segmentation. GrAF defines regions in primary data as the area bounded

by two or more anchors, which are first-class objects in the model. The definition of

anchor and the number of anchors needed to define a region depends on the medium

being annotated. The only assumption that GrAF makes is that anchors have a natural

ordering. For textual data, GrAF uses character offsets for anchors, and two anchors

bound each region.

Annotations in the form of feature structures are associated with nodes in the

graph, including nodes associated with both regions and other annotations, via edges

in the graph. GrAF can represent common annotation types such as hierarchical syntax

trees by allowing, for example, a sentence annotation to have edges to constituent

annotations such as NP, VP, etc. As opposed to AGs, annotations typically label nodes

rather than edges in GrAF, although labeled edges are allowed, and the information

comprising the annotations is represented using feature structures rather than simple

labels.

6

3 GrAF → UIMA → GrAF

Conversion of a GrAF data structure into UIMA involves generating (1) a UIMA data

structure (a CAS), (2) a UIMA type system, and a specification of type priorities. In

principle, because they are based on the same model, annotations represented in GrAF

and UIMA CAS are trivially mappable to one another. This is true in terms of the

model, but there are a few details of the UIMA-internal implementation that require

some additional steps.

3.1 UIMA Type Systems

A UIMA type system specifies the type of data that can be manipulated by annotator

components. A type system defines two kinds of objects; types and features. The type

defines the kinds of data that can be manipulated in a CAS, arranged in an inheritance

hierarchy. A feature defines a field, or slot, within a type. Each CAS type specifies a

single supertype and a list of features that may be associated with that type. A type

inherits all of the features from its supertype, so the features that can be associated

with a type is the union of all features defined by all supertypes in the inheritance

tree. A feature is a name/value pair where the value can be one of UIMA’s built in

primitive types (boolean, char, int, etc.) or a reference to another UIMA object. UIMA

also allows feature values to be arrays of either primitive types or arrays of references

to other objects.

UIMA defines a top level type uima.cas.TOP which contains no features and serves

as the root of the UIMA type system inheritance tree. The root type uima.cas.TOP is

the supertype of uima.cas.AnnotationBase, which is the supertype of uima.tcas.Annotation,

which in turn is the supertype for org.xces.graf.uima.Annotation. All UIMA annota-

tions generated by GrAF use org.xces.graf.uima.Annotation as their supertype. Note

that the UIMA type hierarchy is strictly an is-a hierarchy; for example, there may be

an annotation type pos with subtypes penn pos, claws pos, etc., indicating that each

of these annotations are a kind of part of speech annotation. The hierarchy does not

reflect other kinds of relations such as the relation between a “lemma” annotation

and a “pos” annotation (i.e., a lemma and a pos are typically companion parts of a

morpho-syntactic description, but neither one is a morpho-syntactic description), or

constituency relations in syntactic annotation schemes.

The GrAF Java API provides a Java class that generates a valid UIMA type system

given one or more GrAF objects. The type system is generated by performing a depth-

first traversal of all the nodes in the graph and creating a new type for each kind

of annotation encountered (e.g., token, sentence, POS, etc.). Feature descriptions are

generated for each type at the same time.

One drawback of deriving a type system automatically is that some of the power of

UIMA type systems is lost in the conversion. For example, in the process of conversion,

all feature values are assumed to be strings, even though UIMA allows specification of

the type of a feature value. Since in GrAF, feature values have been serialized from the

contents of an XML attribute, all feature values are represented internally as strings; to

convert a feature value to any other representation would require that GrAF have some

external knowledge of the annotation format being deserialized. Therefore, any type

checking capability for feature value types in UIMA is lost after automatic generation of

the type system. Similarly, it is not possible to determine a supertype for an annotation

7

if it is more specific than org.xces.graf.uima.Annotation from the information in the

GrAF representation alone, so in effect, it is not possible to derive any meaningful type

hierarchy without additional knowledge. For example, it is not possible to include the

information in the type system description that penn pos and claws pos are subtypes

of pos since this information is not represented in the graph. Even in cases where

this kind of information is represented in the graph, it is not retrievable; for example,

FrameNet annotation includes a grammaticalFunction annotation whose children are

elements such as subject, object, etc. However, there is no way to determine what

the parent-child relation is between nodes without a priori knowledge of the annotation

scheme.

Without a source of external knowledge, GrAF does not attempt to make any

assumptions about the annotations and features in the graph. However, all of these

problems are avoided by providing an XML Schema or other source of information

about the GrAF annotations that can be used when generating the type system. The

XML schema can specify the type hierarchy, data types and restricted ranges for feature

values, etc. (see, for example, the XCES (Ide et al, 2000) schema used for the data and

annotations in the American National Corpus (ANC)3).

3.2 UIMA Views and Indexes

A UIMA CAS object may contain more than one view of the artifact being annotated;

for example, a CAS may contain an audio stream as one view and the transcribed

text as another. Each view contains a copy of the artifact, referred to as the subject of

analysis (sofa), and a set of indexes that UIMA annotators (processing modules) use

to access data in the CAS. Each index is associated with one CAS type and indexes

that type by its features–that is, the features are the keys for the index.

The indexes are the only way for UIMA annotators to access annotations in the

CAS. It is necessary to generate these indexes, which are not provided automatically

within UIMA. The GrAF Java API provides a module that generates the indexes at

the same time that it generates the type system description. Since we do not know, and

make no assumptions about, which annotations might be required by other annotators,

all annotations are indexed by all of their features.

3.3 Type Priorities

Type priorities in UIMA are used to determine nesting relations when iterating over

collections of annotations. That is, if two annotations have the same start and end

offsets, then the order in which they will be presented by an iterator is determined

by their type priority; the annotation with the highest priority will be presented first.

Type priorities are specified by an ordered listing of annotation types, where order

determines priority. In GrAF, annotation nesting is implicit in the graph itself.

To generate an explicit type priority specification for UIMA we must first obtain a

list of all annotation types that appear in the graph and then sort the list based on the

order they are encountered during a a depth first traversal of the graph. During the

depth first traversal a N x N precedence matrix is constructed where N is the number

3 http://www.anc.org

8

of annotation types in the graph. If precedes[A,B] == true then A was encountered

as an ancestor of B in the depth first traversal. If precedes[A,B] == precedes[B,A] ==

true then it is assumed that the annotation types have the same priority. Once the

list of annotation types has been collected and the precedence matrix constructed, the

matrix can be used to to sort the annotation types:

int compare(Annotation A,
Annotation B,
PrecedenceMatrix m)

{
boolean AB = m.precedes(A,B);
boolean BA = m.precedes(B,A);
if (AB && BA)
{

return 0; // equal
}
else if (AB)
{

return -1; // A first.
}
else if (BA)
{

return 1; // B first.
}
// Neither AB or BA means A and
// B are not in connected
// components.
return 0;

}

Not all nodes in the graph may be reachable in a depth first traversal, particularly

if multiple annotations formats have been merged together. Therefore, after the initial

traversal has been completed each node is checked to determine if it has been visited.

If not, then another traversal is started from that node. This is repeated until all

nodes/annotations in the graph have been visited at least once.

We have found that UIMA type priorities impose some limitations because they

cannot represent context sensitive annotation orderings. For example, given

<!ELEMENT E1 (A,B)>

<!ELEMENT E2 (B,A)>

The order of A and B differs depending on whether the parent annotation is E1 or E2.

This type of relationship cannot be expressed by a simple ordering of annotations.

3.4 Naming Conflicts

The annotation type names used when generating the UIMA type system are derived

automatically based on the annotation names used in the graph. Annotations in GrAF

may also be grouped into named annotation sets and the generated UIMA type name

consists of a concatenation of the nested annotation set names with the annotation

label appended. For example, multiple part of speech annotations may be represented

in different annotation sets, as shown in Figure 2.

9

<fs>

<f name="msd" value="NN"/>
</fs>

<fs>
<f name="msd" value="NN"/>

</fs>

Fig. 2 GrAF representation of alternative POS annotations

For the above example, two types will be generated: POS token PENN and POS token CLAWS5.

However, GrAF places no restrictions on the names used for annotation set names, an-

notation labels, or feature structure types. Therefore, it is possible that the derived

type name is not a valid UIMA identifier, which are required to follow Java naming

conventions. For example, Part-Of-Speech is a valid name for an annotation label in

GrAF, but because of the hyphen it is not a valid Java identifier and therefore not

valid in UIMA.

To avoid the naming problem, a derived name is converted into a valid UIMA

identifier before creating the UIMA type description. To permit round trip engineering,

that is, ensuring a GrAF → UIMA → GrAF transformation results in the same GrAF

representation as the original, a NameMap file is produced that maps a generated name

to the compatible UIMA name. NameMaps can be used in a UIMA→ GrAF conversion

to ensure the GrAF annotations and annotation sets created are given the same names

as they had in the original GrAF representation.

3.5 Preserving the Graph Structure

While UIMA does not have any graph-specific functionality, the value of a UIMA

feature can be an array of annotations, or more specifically, an array of references to

other annotations. In this way, annotations can effectively “point” to other annotations

in UIMA. We exploit this capability to preserve the structure of the original graph in the

UIMA representation, by adding two features to each annotation: graf children and

graf ancestors. This information can be used to recreate the GrAF representation,

should that ever be desired. It can also be used by UIMA annotators that have been

designed to use and/or manipulate this information.

Although rarely used, GrAF permits edges in the graph to be annotated in the

same way that nodes are. For UIMA conversion, if a graph contains labeled edges

it must be converted into an equivalent graph without labeled edges. A graph with

labeled edges can be converted into an equivalent graph without labeled edges, where

a node replaces the original edge. To preserve the original graph structure, an attribute

indicating that the node is represented as a a labeled edge in GrAF is included.

4 GrAF → GATE → GrAF

The conversion to/from GATE is much simpler than conversion to UIMA, since GATE

is typeless and does not require the overhead of generating a type system or type

10

Fig. 3 UIMA rendering of GrAF annotations

priorities list. While GATE does support annotation schemas, they are optional, and

annotations and features can be created at will. GATE is also much more lenient on

annotation and feature names; names automatically generated by GrAF are typically

valid in GATE.

Representing the graph structure in GATE is not as straightforward as it is in

UIMA. We have developed a plugin to GATE that loads GrAF standoff annotations

into GATE, and a parallel plugin that generates GrAF from GATE’s internal format.

As noted above, GATE uses annotation graphs to represent annotations, However,

because annotation graphs do not provide for annotations of annotations, to transduce

from GrAF to the GATE internal format it is necessary to ”flatten” the graph so that

nodes with edges to other nodes are modified to contain edges directly into the primary

data. GATE assigns a unique id value to every annotation, so it is possible to link

annotations by creating a special feature and referencing the parent/child annotations

by their GATE id values.

The greatest difficulty in a GrAF → GATE conversion arises from the fact that in

GATE, every annotation is expected to have a start and end pointer into the document

content, and annotations are independent layers linked to the primary data. In GrAF,

annotations can be directly linked to other annotations, and a node may have multiple

edges to other nodes that cover (possibly) disjoint regions of text. For example, the

FrameNet4 annotation for a given verb typically includes edges to the associated role

4 http://framenet.icsi.berkeley.edu/

11

fillers (e.g., agent, theme, instrument, etc.), each of which is an annotation itself, and all

of which are rarely contiguous in the document. While it is always possible to “flatten”

a GrAF representation so that it can be represented in GATE’s internal model, it

is not possible to take the round trip back into GrAF without losing information

about relations among annotations, unless special metadata is provided on the edges.

Our current solution to this problem is to give a start and end offset that covers the

smallest region of the text covering the regions associated with all descendants of the

annotation, and recording the information concerning the original graph structure in

attributes to enable reconversion into the original GrAF representation. This solution

is roughly similar to the ad hoc strategy used to enable AGs to represent hierarchy.

5 Exploiting Interoperability

GrAF is intended to serve as the lingua franca for data and annotations used in pro-

cessing systems such as GATE and UIMA. As such, it provides a way for users to take

advantage of each framework’s strengths, e.g., UIMAs capabilities for deploying analy-

sis engines as services that can be run remotely, and GATE’s wide array of processing

resources and capabilities for defining regular expressions over annotations (JAPE). It

should be noted that GATE provides wrappers to allow a UIMA analysis engine to be

used within GATE, and to allow a GATE processing pipeline to be used within UIMA.

To share data and annotations between the two systems, it is necessary to construct

a mapping descriptor to define how to map annotations between the UIMA CAS and

the GATE Document, which operate similarly to the converters from and to GrAF

from data and annotations described above. However, one advantage of using a GrAF

representation as a pivot between the two systems is that when an annotation schema

is used with GrAF data, the conversion from GATE to UIMA is more robust, reflect-

ing the true type description and type priority hierarchies. Plugins for GATE to input

and/or output annotations in GrAF format and a “CAS Consumer” to enable using

GrAF annotations in UIMA are available at http://www.anc.org. We also provide a

corpus reader for importing MASC data and annotations into NLTK.

Using GrAF as a pivot has more general advantages, for example, by allowing

annotations to be imported from and exported to a wide variety of formats, and also

enabling merging annotations from disparate sources into a single annotation graph.

Figure 3 shows a rendering of a Penn Treebank annotation (bracketed format) and a

FrameNet annotation (XML) that have been transduced to GrAF, merged, and then

transduced for use in UIMA. The same data is shown rendered in GATE in Figure 4.

The two ”views” of the data consisting of overlaid annotations for each annotation

type are visible in each rendering. There are multiple possibilities for exploiting and

exploring merged annotations representing a range of annotation types within these

two frameworks. For example, a UIMA analysis engine could be developed to identify

regions annotated by both schemes, or all FrameNet elements that are annotated as

agent and also annotated with Penn Treebank NP-OBJ, etc. In GATE, JAPE rules

could locate patterns in annotations obtained from different sources, or named entity

recognition rules could be enhanced with annotation information from data annotated

in other formats. It would also be possible to compare multiple annotations of the same

type, such as different tokenizations, different POS taggings , etc.

Annotations from different sources (singly or merged in any combination) can also

be converted to several other formats. We provide a web service (Ide et al, 2010b)

12

Fig. 4 GATE rendering of GrAF annotations

that allows users to select some or all parts of the Open American National Corpus

(OANC)5 and the Manually Annotated Sub-Corpus (MASC) (Ide et al, 2010a)–both

of which are represented using GrAF–and choose among the available annotations. The

service then generates a corpus and annotation “bundle” that is made available to the

user for download. The following output formats are currently available:

1. in-line XML (XCES6), suitable for use with the BNCs XAIRA search and access

interface7 and other XML-aware software;

2. token / part of speech, a common input format for general-purpose concordance

software such as MonoConc8, as well as the Natural Language Toolkit (NLTK) (Bird

et al, 2009);

3. CONLL IOB format, used in the Conference on Natural Language Learning shared

tasks.9

We also provide a GrAF Java API10 that can be used to access and manipulate

GrAF annotations directly from Java programs, and render GrAF annotations in a

5 http://www.anc.org
6 XML Corpus Encoding Standard, http://www.xces.org
7 http://xaira.sourceforge.net/
8 http://www.athel.com/mono.html
9 http://ifarm.nl/signll/conll

10 http://www.anc.org/graf-api

13

Fig. 5 Conversion capabilities

format suitable for input to other software such as the open source GraphViz11 graph

visualization application.

Finally, because the GrAF format is isomorphic to input to many graph-analytic

tools, existing graph-analytic software can also be exploited to search and manipulate

GrAF annotations. Trivial merging of GrAF-based annotations involves simply com-

bining the graphs for each annotation, after which graph minimization algorithms12

can be applied to collapse nodes with edges to common subgraphs to identify commonly

annotated components. Graph-traversal and graph-coloring algorithms can also be ap-

plied in order to identify and generate statistics that could reveal interactions among

linguistic phenomena that may have previously been difficult to observe. Other graph-

analytic algorithms — including common sub-graph analysis, shortest paths, minimum

spanning trees, connectedness, identification of articulation vertices, topological sort,

graph partitioning, etc. — may also prove to be useful for mining information from a

graph of annotations at multiple linguistic levels.

We are beginning to see possibilities for true interoperability among not only major

frameworks like UIMA and GATE, but also applications with more limited functionali-

ties as well as in-house formats. This, in turn, opens up the potential to mix and match

among tools for various kinds of processing as appropriate for a given task. In general,

the transduction of legacy schemes such as Penn Treebank into GrAF greatly facilitates

their use in major systems such as UIMA and GATE, as well as other applications and

systems. Figure 5 shows the conversion capabilities among a few annotations schemes,

GrAF, and UIMA and GATE.

All of our conversion tools and GATE plugins are freely available for download

with no restrictions at http://www.anc.org. The UIMA project has received support

11 http://www.graphviz.org/
12 Efficient algorithms for graph merging exist; see, e.g., Habib et al (2000).

14

to develop a UIMA→ GrAF conversion module, which should be available in the near

future.

6 Conclusion

Consideration of the transduction from a generic, relatively abstract representation

scheme such as GrAF into the formats required for widely adopted frameworks for

creating and analyzing linguistically annotated data has several ramifications for in-

teroperability. First, it brings to light the kinds of implementation choices that either

contribute to or impede progress toward interoperability, which can feed future devel-

opment. Second, our work on converting GrAF to the formats supported by UIMA

and GATE shows that while minor differences exist, the underlying data models used

by the two frameworks are essentially the same, as well as being very similar to the

data model underlying GrAF. This is good news for interoperability, since it means

that there is at least implicit convergence on the data model best suited for data and

annotations; the differences lie primarily in the ways in which the model is serialized

internally and as output by different tools. It also means that transduction among the

various formats is possible without loss of information.

We have shown that a UIMA → GrAF or GATE → GrAF conversion is fairly

straightforward; the expressive power of GrAF can easily represent the data mod-

els used by UIMA and GATE. On the other hand, GrAF → UIMA or GrAF →
GATE transformations are less straightforward. Both frameworks can represent graphs,

but neither provides a standard representation that other components are guaranteed

to understand. Given that powerful analysis algorithms for data in graphs are well-

established, there may be considerable advantage to using the graph as a general-

purpose format for use within various modules and analytic engines. In any case, the

generality and flexibility of the GrAF representation has already been shown to be

an effective means to exchange linguistic data and annotations that exist in different

formats, as well as a model for development of annotation schemes in the future.

Acknowledgments

This work was supported by an IBM UIMA Innovation Award and National Science

Foundation grant INT-0753069.

References

Bird S, Liberman M (2001) A formal framework for linguistic annotation. Speech Com-

mun 33(1-2):23–60

Bird S, Klein E, Loper E (2009) Natural Language Processing with Python, 1st edn.

O’Reilly Media

Bontcheva K, Tablan V, Maynard D, Cunningham H (2004) Evolving GATE to meet

new challenges in language engineering. Natural Language Engineering 10(3-4):349–

373

Bunescu RC, Mooney RJ (2007) Extracting relations from text: From word sequences

to dependency paths. In: Kao A, Poteet S (eds) Text Mining and Natural Language

Processing, Springer, pp 29–44

15

Cotton S, Bird S (2002) An integrated framework for treebanks and multilayer annota-

tions. In: Proceedings of the Third International Conference on Language Resources

and Evaluation

Cui H, Sun R, Li K, yen Kan M, seng Chua T (2005) Question answering passage

retrieval using dependency relations. In: In SIGIR 2005, ACM Press, pp 400–407

Cunningham H, Maynard D, Bontcheva K, Tablan V (2002) GATE: A framework

and graphical development environment for robust nlp tools and applications. In:

Proceedings of ACL’02

Ferrucci D, Lally A (2004) UIMA: An architectural approach to unstructured informa-

tion processing in the corporate research environment. Natural Language Engineer-

ing 10(3-4):327–348

Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using wikipedia-

based explicit semantic analysis. In: In Proceedings of the 20th International Joint

Conference on Artificial Intelligence, pp 1606–1611

Grishman R (1997) TIPSTER architecture design document version 2.3, technical re-

port, DARPA

Habib M, Paul C, Viennot L (2000) Partition refinement techniques: an interesting

algorithmic tool kit. International Journal of Foundations of Computer Science 175

Ide N, Bunt H (2010) Anatomy of annotation schemes: Mapping to GrAF. In: Proceed-

ings of the Fourth Linguistic Annotation Workshop, Association for Computational

Linguistics, Uppsala, Sweden, pp 247–255

Ide N, Suderman K (2007) GrAF: A graph-based format for linguistic annotations. In:

Proceedings of the Linguistic Annotation Workshop, Association for Computational

Linguistics, pp 1–8

Ide N, Bonhomme P, Romary L (2000) XCES: An XML-based encoding standard for

linguistic corpora. In: Proceedings of the Second International Language Resources

and Evaluation Conference. Paris: European Language Resources Association

Ide N, Baker C, Fellbaum C, Passonneau R (2010a) The manually annotated sub-

corpus: A community resource for and by the people. In: Proceedings of the ACL

2010 Conference Short Papers, Association for Computational Linguistics, Uppsala,

Sweden, pp 68–73

Ide N, Suderman K, Simms B (2010b) ANC2Go: A web application for customized cor-

pus creation. In: Proceedings of the Seventh International Conference on Language

Resources and Evaluation (LREC), European Language Resources Association, Val-

letta, Malta

ISO (2008) Language Resource Management - Linguistic Annotation Framework. ISO

Document WD 24611

Nguyen DPT, Matsuo Y, Ishizuka M (2007) Exploiting syntactic and semantic infor-

mation for relation extraction from wikipedia. In: In IJCAI07-TextLinkWS

