
From Sequential Processes to Grid Computation
Mark Burgin

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095
Email: mburgin@math.ucla.edu

Marc L. Smith
Department of Computer Science

Colby College
Waterville, ME 04901-8858
Email: mlsmith@colby.edu

Abstract: We introduce an extended model for view-centric reasoning, EVCR, that provides more
comprehensive and flexible abstractions for representing actual concurrency. The theory of Communicating
Sequential Processes (CSP) provides an interleaved semantics for reasoning about concurrency through a
sequentialized trace of events recorded by an idealized observer. The theory of View-Centric Reasoning (VCR)
extended CSP with notions of parallel events and views, and lazy observation, to represent the true concurrency of
simultaneous events and multiple, possibly imperfect observers. But VCR could be more general still, since its
events, like those of CSP, are instantaneous. This restriction precludes the possibility of observing events that
partially overlap in time. EVCR permits partially overlapping events to be observed and recorded by a lazy
observer. The result is a more general model of concurrency; one that is more appropriate for reasoning about
network functioning and, in particular, grid computation.

Keywords: concurrent computation, concurrent process, event, grid automaton, trace

1. Introduction

Hoare’s Communicating Sequential Processes (CSP) is a model of computation that consists of two
main components. CSP provides a process algebra for the specification of concurrent processes, and a
process calculus for reasoning about properties of concurrent systems. The process calculus is based on a
model of observation-based reasoning, using the metaphor of an observer recording a trace of observable
events. The set of observable events link the process algebra and calculus, since they are the building
blocks of both CSP process definitions and computational histories.

The motivation for view-centric reasoning (VCR) stemmed from a desire to preserve more
information about the history of a computation by introducing lazy observation, and multiple, possibly
imperfect observers. In particular, CSP is an interleaved model of concurrency, which means the observer
records simultaneously events she observes in some sequentialized partial order, thus resulting in a
decrease of entropy (i.e., imposing an order of events that did not actually exist during the computation)
and this is not realistic. To overcome this situation, VCR traces were defined over multisets of observable
events, rather than atomic events. The laziness stems from sparing the observer the stressful decision of
what order to record simultaneous events. Furthermore, VCR distinguishes two types of trace: a
computation’s history, and its corresponding views. Since it is possible for a distributed computation to be
observed by more than one observer, consequences of relativity theory provide for the possibility of
different views of the same computation. Thus, the parallel event traces of VCR extend CSP in two
important ways. First, VCR provides the entropy-preserving abstraction of parallel events, and second, it
provides a model for associating a computation’s history with it’s multiple, possibly imperfect, but
realistic views.

VCR’s contribution to the theory of CSP is not as general as it could be; a model of true concurrency
should support abstractions for events whose occurrence partially overlap in time. Thus, the possibility of
observed event simultaneity is not merely a Boolean proposition, but rather a continuum: events A and B
may overlap entirely, partially, or not at all. Extended VCR (EVCR), which is developed in this paper, is
the next step in the evolution of CSP from a model that reduces concurrency to an interleaving of

sequential events, to a model of true concurrency that provides abstractions that represent degrees of
interleaving. EVCR should prove especially useful for modeling and reasoning about properties of
modern grid computation.

2. Systems for Concurrent Computations

Concurrent processes run in systems that have more than one device. The most advanced algorithmic
model for such systems is a grid array and its theoretical counterpart – grid automaton. That is why we
start with informal definitions of grid arrays and grid automata.

Definition 1. A grid array (GAR) is a system of information processing systems (computers, networks,
imbedded systems, etc.), which are situated in a grid, called nodes; these nodes are optionally
connected and interact with one another.

Example 1. The World Wide Web.

Example 2. A computer with all its devices as nodes: processor, RAM, keyboard, printer monitor, mouse,
modem, etc.

Example 3. A natural neural network, such as the brain or the Central Nervous System (CNS) of a human
being.

Definition 2. A grid automaton (GA) is a system of automata, which are situated in a grid, called nodes,
are optionally connected and interact with one another.

Example 4. An artificial neural network.

Example 5. A cellular automaton.

Definition 3. A (physical) distributed process is a group of concurrent processes that go on in a GA
(GAR).

Distributed processes represent dynamics of an active GAR.

Definition 4. An active GA is a GA in which events are occurring.

As grid automata are models of physical devices and systems, their functioning occurs in physical
time. However, each GA has its system time defined by processes in it [1]. For each process (in a grid
automaton) there are two types of time. External time is of some other process. Internal time is
determined by the order in which events are happening. Time determines concurrency. However, in the
next section, we build an abstract model of concurrency that depends on several temporal relations. This
abstract model is correlated with time as a physical phenomenon or system characteristic elsewhere.

3. Concurrency Models: Local Aspect

At first, we consider concurrency of events that is basic for concurrent processes.

Definition 5. An event is an abstract entity that represents an element or a component of an abstract
process.

Definition 6. An embodied event is a state transition of a GA node or edge.

Definition 7. An observable embodied event is a detectable state transition of a GA node or edge.

Not all events are observable if there are, for example, indistinguishable states. There are different
relations between events in a process. The pivotal is the ordering relation. Analyzing real computational
and other processes, we can distinguish several types of event pairs:

• A sequential pair of events consists of two events where one ends before the next starts.

• A simultaneous pair of events consists of two events where both events start and end
simultaneously.

• A coexisting pair of events consists of two events where one starts before the next ends.

• A separable pair of events consists of two events that are not coexisting.

• A separated pair of events consists of two events for which coexistence is excluded.

• An event r is included in an event q if the event q starts before or when the event r starts and
the event q ends after or when the event r ends.

Types of events are formally determined by the corresponding binary relations on sets of events:

• The coexistence relation CER . This relation allows several interpretations, reflecting different
modalities. It can formalize situations in which events must go so that one starts before
another is finished (prescriptive coexistence). It can also formalize situations in which one
event really starts before another is finished (actual coexistence). It can as well formalize
situations in which one event may start before another is finished (possible coexistence).

• The separability relation SPR . This relation shows when events are (or may be) not
coexisting.

• The ordering relation ODR . This relation allows several interpretations. It can formalize the
order in which events must happen (prescriptive order), e.g., at first, we need to compute the
value of a function, and only then to print the result. It can also formalize the order in which
events really happened (actual order). It can as well formalize the order in which events may
happen (possible order).

• The simultaneity relation STR . This relation allows several interpretations. It can formalize
situations in which events must go simultaneously (prescriptive coexistence). It can also
formalize situations in which events really go simultaneously (actual coexistence). It can as
well formalize situations in which events may go simultaneously (possible coexistence).

• The inclusion relation ICR . This relation allows several interpretations. It can formalize
situations in which events must go so that the included event ends before or when the other is
finished and starts after or when the other starts (prescriptive inclusiveness). It can also
formalize situations in which the included event really ends before or when the other is
finished and really starts after or when the other starts (actual inclusiveness). It can as well
formalize situations in which it is possible that the included event ends before or when the
other is finished and starts after or when the other starts (possible inclusiveness).

As EVCR actually models arbitrary processes, some illustrations of the above relations may be found
in music for the piano, where the musical notes are events. A piece of music is composed from individual
notes, each produced by a corresponding key on the piano, according to a musical prescription,
represented in the form of sheet music. The sheet music prescribes when to play separated notes in
succession (e.g., a run), and when to play notes in different possible coexisting fashions. Chords,
arpeggios, melodies, harmonies, and syncopated rhythms are but a few examples of what can be
prescribed by different combinations of the above relations. Upon performing such a piece of music,
members of the audience subsequently make a determination of how well the actual composition of
musical notes match what they believe was prescribed. In some cases, the result is a round of applause.

Returning our attention to grid automata, natural conditions on the above relations are derived from an
analysis of real computations and other processes:

(CP 1) CER is a complement of SPR .

Corollary 1. Any two events are either coexisting or separable.

(CP 2) ODR is a subset of SPR .

Corollary 2. Any two ordered events are separated.

(CP 3) STR and ICR are subsets of CER .

Corollary 3. Any two simultaneous events (of which one is included into another) are coexisting.

(CP 4) CER is a tolerance, i.e., it is reflexive and symmetric.

Corollary 4. Any event is coexisting with itself.

(CP 5) STR is an equivalence.

Corollary 5. Any event is simultaneous with itself.

(CP 6) ODR is a partial quasiorder.

(CP 7) SPR is reflexive and symmetric.

(CP 8) ICR is a tolerance.

Corollary 6. Any event is included into itself.

These relations define connections between events:

Definition 8. Two events a and b are existentially connected if aCER
*b.

Proposition 1. CER
* is an equivalence relation.

Definition 9. Two events a and b are sequentially connected if aODRb.

Definition 10. Two events a and b are parallelly connected if aSTRb.

Let us consider some important types of complex events.

Definition 11. A parallel event is a group of simultaneous events.

Definition 12. A complete parallel event is a group of all events that are simultaneous to one event from
this group.

Proposition 2. A complete parallel event does not depend on the choice of the event to which all other
events from this group are simultaneous.

Proposition 3. A complete parallel event is a maximal parallel event.

Proposition 4. If STR = CER , then ODR induces an order relation on the set of all complete parallel events
and it is possible to make this order linear.

Definition 13. A coexisting event is a group of events in which each pair of events is coexisting.

Proposition 5. Any parallel event is a coexisting event.

However, in general, not every coexisting event is a parallel event. These concepts coincide if and
only if STR = CER .

Definition 14. A complete coexisting event is a maximal coexisting event.

As the simultaneity relation STR is a subset of the coexistence relation CER , we have the following
result.

Proposition 6. A complete coexisting event includes as subsets all parallel events of its elements.

Proposition 7. Two events a and b are simultaneous if and only if a is included in b and b is included in
a, or formally, bSTRa ⇔ aICRb & aICRb.

Corollary 7. STR = ICR ∩ ICR
-1.

4. Concurrency Models: Global Aspect

Events can be elementary and complex. Complex events consist of other events. This allows us to
introduce hierarchy in the set of events and processes.

Definition 15. An abstract process is a system of related events.

Here events are related if for each two of them q and p it is possible to find a sequence of events { r1 ,
… , rn } such that q = r1 , p = rn and each pair (ri , ri+1) belongs to, at least, one of the relations ICR , STR ,
ODR , SPR , and CER.

Definition 16. An embodied process is a system of related embodied events.

Observation on a process gives a trace as its result.

Definition 17. A trace tr is a group of connected events.

Here we consider all three kinds of connections: existential, parallel, and sequential connection.

Let us consider some important types of traces.

Definition 18. A trace tr is called sequential if ODR is a linear order in it.

This concept coincides with the concept of trace in CSP [3].

Definition 19. A trace tr is called parallel if it is a parallel event.

Definition 20. A trace tr is called sequentially parallel if it consists of linear ordered parallel events.

This concept coincides with the concept of trace in VCR [6].

Definition 21. A cluster Cttr(a) of an event a in a trace tr is a group of events coexisting with a in the
trace tr. The event a is called the base of the cluster Cttr(a).

By the definition, a cluster Cttr(a) of an event a is a trace.

Remark 1. A cluster is not necessarily a coexisting event.

Proposition 8. A cluster is a coexisting event if and only if it does not contain two separable events.

Definition 22. A cluster Cttr(a) of an event a is called complete if it contains all events coexisting with a.
Complete cluster is denoted by CCttr(a).

Proposition 9. Any coexisting event to which an event a belongs is a subset of the complete cluster
CCttr(a).

Corollary 8. Any parallel event to which an event a belongs is a subset of the complete cluster CCttr(a).

Definition 23. A cluster Cttr(a) of an event a is called ordered if all events in Cttr(a)\{a} are ordered.

Proposition 10. In an ordered cluster Cttr(a) of an event a, all but, at most, two events are included in a.

Proposition 11. If for events a and b, aICRb is true, then CCttr(a) ⊆ CCttr(b).

Definition 24.

a) An event a in a trace tr is called elementary (in tr) when any event coexisting with a includes a.

b) An event a in a trace tr is called elementary for a set E of events if any event from E coexisting
with a includes a.

c) An event a in a set E of events is called elementary in E when any event from E coexisting with a
includes a.

Proposition 12. If aICRb and aICRc, then bCORc.

Corollary 9. If a is an elementary event, aCORb and aCORc, then bCORc.

Proposition 7 implies the following result.

Corollary 10. Two coexisting elementary events are simultaneous.

Proposition 13. An event simultaneous with an elementary (for a set E) event is itself elementary (for E).

Remark 2. Usually only finite traces are considered. However, some models of computation include (and
have to include to be adequate) infinite sets of events (cf., for example, [5, 7, 4, 2].

Definition 25. A (elementary) section of a trace tr is a cluster Cttr(a) in which the base a is elementary (in
the trace tr).

Corollary 9 implies the following result.

Proposition 14. Any section is a coexisting event.

Definition 26. A parallel (elementary) section of a trace tr is a set of (elementary) sections with parallel
bases.

It is possible to consider parallel section in the model VCR. There any parallel section consists of
parallel events [6].

Definition 27. A randomly ordered parallel section, or ROPS, is a randomly ordered list of clusters from
a parallel section.

It is possible to consider ROPS in the model VCR. There any ROPE coincides with a ROPS [6].

Definition 28. A view of a trace tr is a list of ROPSs in the trace tr.

All introduced constructions of EVCR allow one to build VCR as submodel of EVCR. In this
submodel only the simultaneity relation STR is considered because all events are instantaneous.

5. Conclusions and Future Work

We used the model of Grid Automata as the basis for extending View-Centric Reasoning, and
introduced EVCR as the next step in VCR’s evolution. The new definitions of events and the many ways
events may coincide with other events form the basis for EVCR as a model that provides the abstractions
needed for reasoning about properties of modern grid computation. In particular, EVCR provides for the

possibility of events A and B to overlap in varying degrees, instead of the all-or-nothing simultaneity of
VCR’s (and CSP’s) instantaneous events. This added dimension of continuous time makes EVCR a more
natural model for reasoning about Grid Automata, which must take time and location into account.

Still, we have only laid the foundation for a model that holds much promise. The next stages of EVCR
will include the definition of composition of Grid Automata, including implications for composition of
their respective parallel event traces. Longer term, EVCR may lead to the development of logical tools for
reasoning about concurrent events and processes in EVCR.

Another perspective direction for the further development of EVCR is the automation of
commonsense reasoning, a long goal of the field of artificial intelligence. EVCR provides a flexible base
for enhancing the event calculus, which is used as an effective technique for commonsense reasoning
[8,9].

References

[1] M. Burgin, Elements of the System Theory of Time, LANL, Preprint in Physics 0207055, 2002, 21 p.
(electronic edition: http://arXiv.org)

[2] M. Burgin, Super-recursive Algorithms, Springer, New York, 2005
[3] C. Hoare, Communicating Sequential Processes, Prentice Hall International Series in Computer

Science. UK: Prentice-Hall International, UK, Ltd., 1985.
[4] Li, W., Ma, S., Sui, Y., and Xu, K. (2001) A Logical Framework for Convergent Infinite

Computations, Preprint cs.LO/0105020 (electronic edition: http://arXiv.org)
[5] Rabin, M.O. (1969) Decidability of Second-order Theories and Automata on Infinite Trees,

Transactions of the AMS, v. 141, pp. 1-35
[6] M. Smith. (2000) View-Centric Reasoning about Parallel and Distributed Computation. PhD thesis,

University of Central Florida, Orlando, FL 32816-2362, December 2000.
[7] Vardi, M.Y. and Wolper, P. (1994) Reasoning about Infinite Computations, Information and

Computation, v. 115, No.1, pp. 1—37
[8] Kowalski, R. and Sergot, M. J. (1986) A logic-based calculus of events, New Generation Computing,

v. 4, pp. 67-95
[9] Mueller, Erik T. Commonsense reasoning, San Francisco, Morgan Kaufmann, 2006

