

Teaching Java Concurrency to CS vs IT Students:
A Matter of Emphasis

Charles E. Hughes
School of Electrical Eng. and Computer Science

University of Central Florida
4000 Central Florida Blvd.

Orlando, Florida 32816-2362, USA

Marc L. Smith
Computer Science Department

Colby College
5853 Mayflower Hill

Waterville, Maine, 04901-8858, USA

 Abstract— A number of colleges and universities

have recently added new degree programs in
Information Technology (IT), or added IT
components to existing Computer Science (CS)
programs. Java language and technology are almost
inescapable elements of both CS and IT programs.
One of Java's more advanced features, language-
level support for concurrency in the form of explicit
multithreading, is important to both CS and IT
students, but for different reasons. Teaching Java
concurrency to CS and IT students, therefore,
presents different challenges and requires
emphasizing the topic in different ways. We discuss
these issues, and present our experiences from CS
and IT classes taught recently, in which Java
concurrency was a topic.

Index Terms— concurrency, multithreading, Java,
information technology curriculum, computer science
curriculum.

1 INTRODUCTION
For the last almost four decades, Computer
Science programs have addressed issues of
concurrency within their core curricula. In the
early days of our discipline, concurrency was
mostly presented in the context of the solutions
provided in operating systems produced by CDC,
Digital Equipment, IBM and Xerox. With the
publication of Dijkstra’s seminal article [1] in
1968, concurrency became a proper academic
topic, rather than a case study. However, even
with the rapid introduction of science to this
complex topic, e.g., in Hoare’s influential paper
on monitors [2], concurrency remained an issue
generally avoided by programmers, as no support
existed in most programming languages. A
number of early exceptions included Concurrent
Pascal [3] and Modula [4].

The first author’s work was supported in part by the National
Science Foundation under grant EIA 9986051

During the 1970’s and 1980’s, the CS
discipline treated concurrency in the context of
operating systems and then databases, and that’s
where it mostly resided in the computer science
curriculum until the 1990’s. Of course, there
were early attempts to address the topic as a
language add-on, e.g., in the base classes of
Smalltalk80 [5] and in the language independent
library calls provided by C-Linda [6].

The late 1980’s and the 1990’s saw rapid
changes in our understanding of concurrency and
the often related topic of communication. Some
of this understanding came about in the brief era
of monolithic parallel computers, but mostly it is
the current era of pervasive distributed computing
that has made concurrency a mainstream topic in
computer science and in the evolving discipline
of information technology. Our goal in this paper
is to discuss how the emphases in these
disciplines differ and how this affects what we
teach students in each. Our focus here is on the
Java language, because of its built-in support for
primitive concurrency and its rich set of APIs that
support high-level distributed programming
paradigms

2 DIFFERENTIATING NEEDS
A distributed computation course for computer
scientists typically focuses on science (e.g.,
mathematical reasoning, algorithm design and
analysis), programming paradigms (e.g., message
passing, remote methods, middleware mediated)
and system architectures (e.g., dedicated, shared).
Computer science students study formal means of
reasoning about complex systems, which results
in their studying the early works of the masters
(Dijkstra and Hoare) and subsequent formalisms
for such reasoning, e.g., [7, 8, 9], as well as great
ideas revisited and reinvigorated, e.g., [10, 11,
12]. One of the authors also adds in meta-
theorems, such as the proof that “Oblivious

Comparison Exchange” sorts need only be shown
correct for 0-1 data. This is an especially
interesting proof for computer scientists, as it
simultaneously can be used to establish an order
bound on the time complexity of an algorithm in
the process of its being shown correct. An
appropriate text is Andrews [13].

In contrast, we typically teach information
technology students about productivity, security
and integration with the rest of an enterprise.
These students must understand how applications
interact in the enterprise setting. The focus is on
assembling components in novel ways, as
opposed to building individual components and
assembly tools, tasks most commonly performed
by computer scientists. While basic concepts
such as semaphores and monitors are covered,
formal proofs are rarely appropriate. An
appropriate text is Deitel et al. [14]

3 CS APPROACH

3.1 Concurrency in General
Concurrency, whether multithreaded, parallel or
distributed, requires communication and
coordination between processes to ensure the
integrity of shared resources (e.g., memory,
devices). Synchronization is a special case of
coordination.

One of the first topics we discuss is the
meaning and differentiation of the “Safety” and
“Liveness” properties. The former says that
nothing bad ever happens (e.g., mutual
exclusion); the latter says that something good
eventually happens (e.g., termination). Using
these two simple concepts as a basis, we can
categorize other common properties such as
partial correctness, total correctness and eventual
entry to a critical section.

We then introduce students to the notions of
atomic actions and levels of atomicity. We
present the need for hardware/software support
and the possibilities of different levels of
abstraction. For example, at the instruction level,
we present Test-and-Set and Fetch-and-Add
instructions, plus the approaches of busy waiting
and spin locks.

With these basic topics in hand, we then
introduce our students to the non-determinism
inherent in concurrency. We present the notion

of thread interleaving, program histories, and
mechanisms to limit the number of possible
interleavings so that only desirable outcomes
remain possible.

We then take the students from the abstract
discussions above to specific concurrency control
mechanisms starting with semaphores. We show
how to implement semaphores with low-level
instructions. We then use semaphores to
implement critical sections, addressing the
problem with achieving fairness (unconditional,
weak and strong) and its dependence on process
scheduling algorithms. This is then extended to
the broader issues associated with critical
sections, namely multual exclusion, absence of
deadlock and livelock, absence of unnecessary
delays and the need for eventual entry (a fairness
criterion).

The next higher level of abstraction we
introduce is monitors, a form of implicit critical
section. Fairness is discussed in the context of
condition variables and the algorithms for
managing waiting queues (FIFO versus priority
and Signal & Continue versus Signal & Wait
semantics).

As with all other mechanisms, we simulate one
with the other (here semaphores with monitors) to
gain a better understanding of each. We also
demonstrate a number of strategies such as
passing the baton.

3.2 Concurrency in Java
Java and the Java Virtual Machine (JVM) support
multiple threads of execution, synchronized
methods and code blocks (thanks to every object
providing an implicit lock), and
signal/notify/notifyAll operations. Essentially,
Java provides a native but somewhat limited
monitor implementation. An interesting (and
somewhat distressing) point is that Java's
celebrated cross-platform portability and WORM
(write once, run many) features do not extend to
multithreaded programs, in the sense that runtime
program behavior can differ from platform to
platform.

Another surprising characteristic of instruction
atomicity with the JVM concerns variables of
type long and double. Both data types are stored
in two 32-bit words. Low-level load and store
operations are not required to be atomic when
accessing longs and doubles. This means context

switching could occur half-way between loading
or storing these variable types. To be safe, one
needs to synchronize all such accesses.

Beyond these subtle, and not terribly well-
documented features of Java, one must be
cognizant of the consequences of the rapid
evolution of the language and its JVM
implementations. In fall 2001, one of us (MLS)
demonstrated a multithreaded Java solution to the
Dining Philosophers Problem. It had unsafe and
safe methods to pick up forks. It was easy to
demonstrate the deadlock. This semester (Spring
2003), running the same program, we could not
get the threads to deadlock. Now, in this
instance, the result may be viewed an
improvement in scheduling algorithm, but notice
it's just an improvement, not a change in required
semantics. Theoretically, the deadlock is still
possible, but much more difficult to test for and
detect. Using this as an empirical example, the
author was able to stress the importance of sound
design principles and the need for formal
reasoning. Of course, a possible consequence of
a program's change in behavior over time is the
possibility of undesirable properties emerging. It
is as dangerous for programs to rely on particular
implementations of the JVM as it was for
FORTRAN programmers in the old days of
computing to rely on the values of DO-loop
variables after loop termination (they were
undefined in the language semantics, had
predictable values on most individual compilers,
but had varying values across different
compilers).

Beyond the basic concurrency support in Java,
we look carefully at important APIs that
implement theoretically sound paradigms for
communication and coordination. In particular,
we have chosen to study several of Java’s
implementation of the tuple space paradigm,
along with an implementation of CSP.

The concept of tuple spaces is introduced as an
example of generative communication, a
paradigm distinct from shared memory and
message passing. The specific implementations
studied include (but are not limited to) Sun's
JavaSpaces and IBM's TSpaces. With these
implementations, we now have the possibility of
implicit and scalable communication across
JVMs and physical processors.

Our final high-level Java API is JCSP, an
implementation of Hoare’s CSP [7, 11].
Different from other examples of concurrency
seen so far, JCSP programs are by default
deterministic. Communication between
processes is via channels. Composition of new
CSProcesses from existing CSProcesses is
elegant, as one would expect in the
implementation of an elegant theoretical
framework. JCSP obtains its primary advantages
over other approaches due to its strong
mathematical foundation for reasoning about
safety and liveness properties. Alternation
(nondeterminism) is supported via three
operations: select(), priSelect(), and fairSelect().

Both tuple spaces and JCSP have commercial
implementations. In the case of tuple spaces, the
GigaSpaces Platform provides a solution that its
authors claim supports large scale Enterprise
applications. JCSP is commercially available in a
Network Edition that permits scalable distributed
computing.

3.3 Distributed Programming Paradigms
We introduce our students to three distributed
computing paradigms, channels (as exemplified
by TCP/IP and JCSP), distributed objects (as
exemplified by Java's RMI and OMG's CORBA)
and middleware-mediated (as exemplified by
Jini/JavaSpaces). Typically, this stage of the
course includes a few small programming
assignments and one substantial project. The
project can vary from an on-line bidding system,
implemented in either RMI or some space-based
middleware to the design and implementation of
a multiplayer MUD, with simple agents playing
the roles of some of the players.

4 IT APPROACH

4.1 Concurrency – an experienced-based
approach

Although all students who enter our IT course on
distributed computing, titled “Distributed
Applications in the Enterprise,” take prerequisite
classes in operating systems and object-oriented
programming with Java, we have found that they,
like computer science students, have a limited
understanding of the many consequences of
concurrency. Thus, we start the course off with a

discussion of threads and processes, focusing on
Java threads.

To emphasize the importance of writing
thread-safe code, we give them an assignment
concerning a sample program that has many
threads. The program uses no synchronization,
has serious race conditions, yet typically works
when run on a single processor machine. The
purpose here, as with the Dining Philosopher
example shown in the CS course, is to give our
students experience with how hard it can be to
debug a multi-threaded program, and thus why
getting it right is better than spending the rest of
your career fixing subtle errors. In the case of CS
students, this is an opportunity to talk about the
benefits of formal reasoning. In the case of the
IT students, it’s a chance to talk about the
advantages of assembling reliable components
over re-inventing the wheel (and creating a
square one at that).

As an example, in fall 2002 we provided our
IT class with a Java program that sorts by
assigning a separate thread to each interior
element of an array, value[0..n-1]. The ith thread
(0 < i < n-1) in essence carries out the following
algorithm:

forever {
sleep for a random period of time
up to a fifth of a second;
if value[i] < value[i-1]

swap (i, i-1);
if value[i] > value[i+1]

swap (i, i+1);
}
where swap is defined as
swap (i, j) {

temp = value[j];
value[j] = value[i];
value[i] = temp;

}

Clearly, this has problems, e.g., if a thread
loses control when it is in the middle of a swap.
However, if the JVM is a single process running
on a single processor, and if all threads give up
control only when they sleep, each iteration of
the loop acts like an atomic action, and there are
no perceived race conditions.

The task we assign to our students is to find all
the potential problems in this rather simple multi-
threaded example, add thread yields to expose
those problems, and demonstrate the results.

There are actually two very distinct types of
problems here. First, losing control in the middle
of the swap can cause the array to become
corrupted with multiple copies of a single value
replacing others. Second, losing control right
after a decision is made to swap, but before
swapping, can cause the sort to make wrong
swaps. In that case, we may keep permuting
values forever (although that is unlikely). From a
theoretical point of view, the first case violates a
safety condition and results in the program
entering an invalid state; the second case violates
a liveness condition and results in a failure of the
program to converge to the correct result.

As you can see, while this is not a deep formal
approach, we do expose our students to some of
the science and programming paradigms that are
the core of the computer science aspects.

4.2 Building a Distributed System
Enterprise systems typically include services
provided by simple client-server as well as more
complex multi-tiered and (in some cases) peer-to-
peer systems. Our primary emphasis here is on
multi-tiered systems. To present these, we
introduce Servlets, and the notion of a container
that provides efficient and secure execution of a
Servlet's services, and the enterprise-level
management of the resources shared by multiple
services. We extend this notion to include Java
Server Pages (JSP), typically using Apache
Tomcat as the middle tiers container. However,
some of our students choose to use much more
functional systems such as IBM WebSphere,
Borland Enterprise Server or JBoss.

Designing and building a three tiered system
(web client, application server, backend database)
gets our IT students familiar with the many issues
involved and the concurrency challenges that
arise when multiple tier 1 clients simultaneously
access the tier 2 application server which in turn
generates concurrent demands on the tier 3
database. The problem becomes even more
interesting when the middle tier caches database
entries, strategy required for efficiency and
responsiveness.

Further details on this course and the IT
program in general, as implemented at the
University of Central Florida, can be found at
[15]

4.3 Distributed Programming Paradigms
As with the CS course, we introduce our IT
students to three distributed computing
paradigms, channels (as exemplified by TCP/IP;
we don’t do JCSP here), distributed objects (as
exemplified by Java's RMI and OMG's CORBA)
and middleware-mediated (as exemplified by
Jini/JavaSpaces). This part of the course may
involve programming that is a bit more technical
than IT majors typically encounter, but we feel
that at least a conceptual knowledge is critical to
their success. TCP/IP and its underlying UDP
protocol are presented through simple examples,
e.g., time and multiplayer game services. RMI
and CORBA are demonstrated by a bidding
service. JavaSpaces is demonstrated by
investigating its use as middleware for tier 0
devices (appliances), as well as serving as the
communication/ coordination layer of a shared
virtual world.

In any given semester we may vary the choice
of RMI, CORBA, or space-based middleware as
the basis of a programming assignment. In the
2001-2002 semesters, the choice was CORBA.
In fall 2002 we required students to make some
small additions to an RMI bid system, adding
new services. One added lesson that we hope
they take from this is that one can add services to
a system without disenfranchising those running
older clients (ah, the beauty of interfaces).

5 CONCLUSIONS
We have presented the concurrency components
of two courses: one for CS majors, the other for
IT majors. Versions of the CS course were
taught at the University of Central Florida (UCF)
and at Colby College, the home institutions of the
authors. The IT course was taught at UCF only,
as Colby does not have an IT major.

This paper is not meant to lay down a template
that all others should follow. Rather, our goal is
to initiate a productive discussion about what are
the common, core skills and concepts for both
clientele (CS and IT), and what are the topics or

emphases that differentiate these two groups of
students.

6 REFERENCES
[1] Dijkstra, E. W. (1968) “Cooperating

Sequential Processes,”in F. Genuys, ed.,
Programming Languages, Academic Press,
New York, pp. 43-112.

[2] Hoare, C. A. R. (1974) “Monitors: An
Operating System Structuring Concept,”
Communications of the ACM 17(10), October
1974, pp. 549-557.

[3] Brinch Hansen, P. (1975) “The Programming
Language Concurrent Pascal,” IEEE
Transactions on Software Engineering 1(2),
June 1975, pp. 199-206.

[4] Wirth, N. (1977) “Modula: A Language for
Modular Programming,” Software Practice
and Experience 7, pp. 3-35.

[5] Goldberg, A. J. and Robson, D. (1983)
Smalltalk-80: The Language and Its
Implementation, Addison-Wesley, Reading,
MA.

[6] Gelernter, D. (1985) “Generative
Communication in Linda,” ACM
Transactions on Programming Languages
and Systems 7(1), January 1985, pp 80-112.

[7] Hoare, C. (1985). Communicating Sequential
Processes, Prentice-Hall International, Ltd.,
UK.

[8] Agha, G. A. (1986). ACTORS: A Model of
Concurrent Computation in Distributed
Systems. The MIT Press Series in Artificial
Intelligence. The MIT Press, Cambridge,
Massachusetts.

[9] Schneider, S. (1999) Concurrent and Real-
Time Systems: The CSP Approach, John
Wiley & Sons, New York.

[10] Carriero, N. and Gelernter, D. (2001) A
Computational Model of Everything.
Communications of the ACM 44(11),
November 2001, pp. 77-81.

[11] Welch, P. H. and Vinter, B. (2002) in
Concurrent Systems Engineering Series
(Pascoe, Welch, Loader and Sunderam, Eds.)
IOS Press, Amsterdam, pp. 203-222.

[12] Smith, M. L., Parsons, R. J. and Hughes, C.
E. (2003) “View-centric Reasoning for Linda
and Tuple Space Computation,” IEE
Proceedings-Software 150(2), April 2003.

[13] Andrews, G. R. (2000). Foundations of
Multithreaded, Parallel, and Distributed
Programming. Addison Wesley.

[14] Deitel, H., Deitel. P. and Santry S. (2002)
Advanced Java™ 2 Platform, Prentice-Hall.

[15] Hughes, C. E. and Marin, G. (2003). “A New
Program in Information Technology,”
International Conference on Information
Technology (ITCC 2003), Las Vegas, April
28-30, 2003.

