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 Abstract— A number of colleges and universities 

have recently added new degree programs in 
Information Technology (IT), or added IT 
components to existing Computer Science (CS) 
programs. Java language and technology are almost 
inescapable elements of both CS and IT programs. 
One of Java's more advanced features, language-
level support for concurrency in the form of explicit 
multithreading, is important to both CS and IT 
students, but for different reasons. Teaching Java 
concurrency to CS and IT students, therefore, 
presents different challenges and requires 
emphasizing the topic in different ways. We discuss 
these issues, and present our experiences from CS 
and IT classes taught recently, in which Java 
concurrency was a topic. 
 

Index Terms— concurrency, multithreading, Java, 
information technology curriculum, computer science 
curriculum. 
 

1 INTRODUCTION 
For the last almost four decades, Computer 
Science programs have addressed issues of 
concurrency within their core curricula.  In the 
early days of our discipline, concurrency was 
mostly presented in the context of the solutions 
provided in operating systems produced by CDC, 
Digital Equipment, IBM and Xerox.  With the 
publication of Dijkstra’s seminal article [1] in 
1968, concurrency became a proper academic 
topic, rather than a case study.  However, even 
with the rapid introduction of science to this 
complex topic, e.g., in Hoare’s influential paper 
on monitors [2], concurrency remained an issue 
generally avoided by programmers, as no support 
existed in most programming languages.  A 
number of early exceptions included Concurrent 
Pascal [3] and Modula [4].   
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During the 1970’s and 1980’s, the CS 
discipline treated concurrency in the context of 
operating systems and then databases, and that’s 
where it mostly resided in the computer science 
curriculum until the 1990’s.  Of course, there 
were early attempts to address the topic as a 
language add-on, e.g., in the base classes of 
Smalltalk80 [5] and in the language independent 
library calls provided by C-Linda [6].   

The late 1980’s and the 1990’s saw rapid 
changes in our understanding of concurrency and 
the often related topic of communication.  Some 
of this understanding came about in the brief era 
of monolithic parallel computers, but mostly it is 
the current era of pervasive distributed computing 
that has made concurrency a mainstream topic in 
computer science and in the evolving discipline 
of information technology.  Our goal in this paper 
is to discuss how the emphases in these 
disciplines differ and how this affects what we 
teach students in each.  Our focus here is on the 
Java language, because of its built-in support for 
primitive concurrency and its rich set of APIs that 
support high-level distributed programming 
paradigms 

2 DIFFERENTIATING NEEDS 
A distributed computation course for computer 
scientists typically focuses on science (e.g., 
mathematical reasoning, algorithm design and 
analysis), programming paradigms (e.g., message 
passing, remote methods, middleware mediated) 
and system architectures (e.g., dedicated, shared).  
Computer science students study formal means of 
reasoning about complex systems, which results 
in their studying the early works of the masters 
(Dijkstra and Hoare) and subsequent formalisms 
for such reasoning, e.g., [7, 8, 9], as well as great 
ideas revisited and reinvigorated, e.g., [10, 11, 
12].  One of the authors also adds in meta-
theorems, such as the proof that “Oblivious 



 

Comparison Exchange” sorts need only be shown 
correct for 0-1 data.  This is an especially 
interesting proof for computer scientists, as it 
simultaneously can be used to establish an order 
bound on the time complexity of an algorithm in 
the process of its being shown correct.  An 
appropriate text is Andrews [13]. 

In contrast, we typically teach information 
technology students about productivity, security 
and integration with the rest of an enterprise.  
These students must understand how applications 
interact in the enterprise setting.  The focus is on 
assembling components in novel ways, as 
opposed to building individual components and 
assembly tools, tasks most commonly performed 
by computer scientists.  While basic concepts 
such as semaphores and monitors are covered, 
formal proofs are rarely appropriate.  An 
appropriate text is Deitel et al. [14] 

3 CS APPROACH 

3.1 Concurrency in General 
Concurrency, whether multithreaded, parallel or 
distributed, requires communication and 
coordination between processes to ensure the 
integrity of shared resources (e.g., memory, 
devices).  Synchronization is a special case of 
coordination. 

One of the first topics we discuss is the 
meaning and differentiation of the “Safety” and 
“Liveness” properties.  The former says that 
nothing bad ever happens (e.g., mutual 
exclusion); the latter says that something good 
eventually happens (e.g., termination).  Using 
these two simple concepts as a basis, we can 
categorize other common properties such as 
partial correctness, total correctness and eventual 
entry to a critical section. 

We then introduce students to the notions of 
atomic actions and levels of atomicity.  We 
present the need for hardware/software support 
and the possibilities of different levels of 
abstraction.  For example, at the instruction level, 
we present Test-and-Set and Fetch-and-Add 
instructions, plus the approaches of busy waiting 
and spin locks.   

With these basic topics in hand, we then 
introduce our students to the non-determinism 
inherent in concurrency.  We present the notion 

of thread interleaving, program histories, and 
mechanisms to limit the number of possible 
interleavings so that only desirable outcomes 
remain possible. 

We then take the students from the abstract 
discussions above to specific concurrency control 
mechanisms starting with semaphores.  We show 
how to implement semaphores with low-level 
instructions.  We then use semaphores to 
implement critical sections, addressing the 
problem with achieving fairness (unconditional, 
weak and strong) and its dependence on process 
scheduling algorithms.  This is then extended to 
the broader issues associated with critical 
sections, namely multual exclusion, absence of 
deadlock and livelock, absence of unnecessary 
delays and the need for eventual entry (a fairness 
criterion). 

The next higher level of abstraction we 
introduce is monitors, a form of implicit critical 
section.  Fairness is discussed in the context of 
condition variables and the algorithms for 
managing waiting queues (FIFO versus priority 
and Signal & Continue versus Signal & Wait 
semantics). 

As with all other mechanisms, we simulate one 
with the other (here semaphores with monitors) to 
gain a better understanding of each.  We also 
demonstrate a number of strategies such as 
passing the baton. 

3.2 Concurrency in Java 
Java and the Java Virtual Machine (JVM) support 
multiple threads of execution, synchronized 
methods and code blocks (thanks to every object 
providing an implicit lock), and 
signal/notify/notifyAll operations.  Essentially, 
Java provides a native but somewhat limited 
monitor implementation.  An interesting (and 
somewhat distressing) point is that Java's 
celebrated cross-platform portability and WORM 
(write once, run many) features do not extend to 
multithreaded programs, in the sense that runtime 
program behavior can differ from platform to 
platform. 

Another surprising characteristic of instruction 
atomicity with the JVM concerns variables of 
type long and double.  Both data types are stored 
in two 32-bit words.  Low-level load and store 
operations are not required to be atomic when 
accessing longs and doubles.  This means context 



 

switching could occur half-way between loading 
or storing these variable types.  To be safe, one 
needs to synchronize all such accesses. 

Beyond these subtle, and not terribly well-
documented features of Java, one must be 
cognizant of the consequences of the rapid 
evolution of the language and its JVM 
implementations.  In fall 2001, one of us (MLS) 
demonstrated a multithreaded Java solution to the 
Dining Philosophers Problem.  It had unsafe and 
safe methods to pick up forks.  It was easy to 
demonstrate the deadlock.  This semester (Spring 
2003), running the same program, we could not 
get the threads to deadlock.  Now, in this 
instance, the result may be viewed an 
improvement in scheduling algorithm, but notice 
it's just an improvement, not a change in required 
semantics.  Theoretically, the deadlock is still 
possible, but much more difficult to test for and 
detect.  Using this as an empirical example, the 
author was able to stress the importance of sound 
design principles and the need for formal 
reasoning.  Of course, a possible consequence of 
a program's change in behavior over time is the 
possibility of undesirable properties emerging.  It 
is as dangerous for programs to rely on particular 
implementations of the JVM as it was for 
FORTRAN programmers in the old days of 
computing to rely on the values of DO-loop 
variables after loop termination (they were 
undefined in the language semantics, had 
predictable values on most individual compilers, 
but had varying values across different 
compilers). 

Beyond the basic concurrency support in Java, 
we look carefully at important APIs that 
implement theoretically sound paradigms for 
communication and coordination.  In particular, 
we have chosen to study several of Java’s 
implementation of the tuple space paradigm, 
along with an implementation of CSP. 

The concept of tuple spaces is introduced as an 
example of generative communication, a 
paradigm distinct from shared memory and 
message passing.  The specific implementations 
studied include (but are not limited to) Sun's 
JavaSpaces and IBM's TSpaces.  With these 
implementations, we now have the possibility of 
implicit and scalable communication across 
JVMs and physical processors. 

Our final high-level Java API is JCSP, an 
implementation of Hoare’s CSP [7, 11].  
Different from other examples of concurrency 
seen so far, JCSP programs are by default 
deterministic.  Communication between 
processes is via channels.  Composition of new 
CSProcesses from existing CSProcesses is 
elegant, as one would expect in the 
implementation of an elegant theoretical 
framework.  JCSP obtains its primary advantages 
over other approaches due to its strong 
mathematical foundation for reasoning about 
safety and liveness properties.  Alternation 
(nondeterminism) is supported via three 
operations: select(), priSelect(), and fairSelect().   

Both tuple spaces and JCSP have commercial 
implementations.  In the case of tuple spaces, the 
GigaSpaces Platform provides a solution that its 
authors claim supports large scale Enterprise 
applications.  JCSP is commercially available in a 
Network Edition that permits scalable distributed 
computing. 

3.3 Distributed Programming Paradigms 
We introduce our students to three distributed 
computing paradigms, channels (as exemplified 
by TCP/IP and JCSP), distributed objects (as 
exemplified by Java's RMI and OMG's CORBA) 
and middleware-mediated (as exemplified by 
Jini/JavaSpaces).  Typically, this stage of the 
course includes a few small programming 
assignments and one substantial project.  The 
project can vary from an on-line bidding system, 
implemented in either RMI or some space-based 
middleware to the design and implementation of 
a multiplayer MUD, with simple agents playing 
the roles of some of the players. 

4 IT APPROACH 

4.1 Concurrency – an experienced-based 
approach 

Although all students who enter our IT course on 
distributed computing, titled “Distributed 
Applications in the Enterprise,” take prerequisite 
classes in operating systems and object-oriented 
programming with Java, we have found that they, 
like computer science students, have a limited 
understanding of the many consequences of 
concurrency.  Thus, we start the course off with a 



 

discussion of threads and processes, focusing on 
Java threads.  

To emphasize the importance of writing 
thread-safe code, we give them an assignment 
concerning a sample program that has many 
threads.  The program uses no synchronization, 
has serious race conditions, yet typically works 
when run on a single processor machine.  The 
purpose here, as with the Dining Philosopher 
example shown in the CS course, is to give our 
students experience with how hard it can be to 
debug a multi-threaded program, and thus why 
getting it right is better than spending the rest of 
your career fixing subtle errors.  In the case of CS 
students, this is an opportunity to talk about the 
benefits of formal reasoning.  In the case of the 
IT students, it’s a chance to talk about the 
advantages of assembling reliable components 
over re-inventing the wheel (and creating a 
square one at that).  

As an example, in fall 2002 we provided our 
IT class with a Java program that sorts by 
assigning a separate thread to each interior 
element of an array, value[0..n-1].  The ith thread 
(0 < i < n-1) in essence carries out the following 
algorithm: 
 

forever { 
sleep for a random period of time 
up to a fifth of a second; 
if value[i] < value[i-1] 

swap (i, i-1); 
if value[i] > value[i+1] 

swap (i, i+1); 
} 
where swap is defined as 
swap (i, j) { 

temp = value[j]; 
value[j] = value[i]; 
value[i] = temp; 

} 
 

Clearly, this has problems, e.g., if a thread 
loses control when it is in the middle of a swap.  
However, if the JVM is a single process running 
on a single processor, and if all threads give up 
control only when they sleep, each iteration of 
the loop acts like an atomic action, and there are 
no perceived race conditions. 

The task we assign to our students is to find all 
the potential problems in this rather simple multi-
threaded example, add thread yields to expose 
those problems, and demonstrate the results.   

There are actually two very distinct types of 
problems here.  First, losing control in the middle 
of the swap can cause the array to become 
corrupted with multiple copies of a single value 
replacing others.  Second, losing control right 
after a decision is made to swap, but before 
swapping, can cause the sort to make wrong 
swaps.  In that case, we may keep permuting 
values forever (although that is unlikely).  From a 
theoretical point of view, the first case violates a 
safety condition and results in the program 
entering an invalid state; the second case violates 
a liveness condition and results in a failure of the 
program to converge to the correct result.   

As you can see, while this is not a deep formal 
approach, we do expose our students to some of 
the science and programming paradigms that are 
the core of the computer science aspects.   

4.2 Building a Distributed System 
Enterprise systems typically include services 
provided by simple client-server as well as more 
complex multi-tiered and (in some cases) peer-to-
peer systems.  Our primary emphasis here is on 
multi-tiered systems.  To present these, we 
introduce Servlets, and the notion of a container 
that provides efficient and secure execution of a 
Servlet's services, and the enterprise-level 
management of the resources shared by multiple 
services.  We extend this notion to include Java 
Server Pages (JSP), typically using Apache 
Tomcat as the middle tiers container.  However, 
some of our students choose to use much more 
functional systems such as IBM WebSphere, 
Borland Enterprise Server or JBoss.  

Designing and building a three tiered system 
(web client, application server, backend database) 
gets our IT students familiar with the many issues 
involved and the concurrency challenges that 
arise when multiple tier 1 clients  simultaneously 
access the tier 2 application server which in turn 
generates concurrent demands on the tier 3 
database.  The problem becomes even more 
interesting when the middle tier caches database 
entries, strategy required for efficiency and 
responsiveness. 



 

Further details on this course and the IT 
program in general, as implemented at the 
University of Central Florida, can be found at 
[15] 

4.3 Distributed Programming Paradigms 
As with the CS course, we introduce our IT 
students to three distributed computing 
paradigms, channels (as exemplified by TCP/IP; 
we don’t do JCSP here), distributed objects (as 
exemplified by Java's RMI and OMG's CORBA) 
and middleware-mediated (as exemplified by 
Jini/JavaSpaces).  This part of the course may 
involve programming that is a bit more technical 
than IT majors typically encounter, but we feel 
that at least a conceptual knowledge is critical to 
their success.  TCP/IP and its underlying UDP 
protocol are presented through simple examples, 
e.g., time and multiplayer game services.  RMI 
and CORBA are demonstrated by a bidding 
service.  JavaSpaces is demonstrated by 
investigating its use as middleware for tier 0 
devices (appliances), as well as serving as the 
communication/ coordination layer of a shared 
virtual world.   

In any given semester we may vary the choice 
of RMI, CORBA, or space-based middleware as 
the basis of a programming assignment.  In the 
2001-2002 semesters, the choice was CORBA.  
In fall 2002 we required students to make some 
small additions to an RMI bid system, adding 
new services.  One added lesson that we hope 
they take from this is that one can add services to 
a system without disenfranchising those running 
older clients (ah, the beauty of interfaces).  

5 CONCLUSIONS 
We have presented the concurrency components 
of two courses: one for CS majors, the other for 
IT majors.  Versions of the CS course were 
taught at the University of Central Florida (UCF) 
and at Colby College, the home institutions of the 
authors.  The IT course was taught at UCF only, 
as Colby does not have an IT major. 

This paper is not meant to lay down a template 
that all others should follow.  Rather, our goal is 
to initiate a productive discussion about what are 
the common, core skills and concepts for both 
clientele (CS and IT), and what are the topics or 

emphases that differentiate these two groups of 
students. 
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