A Characterization of
Lazy and Eager Semantic Solutions to the
Linda Predicates Ambiguity Problem

Marc L. Smith and Charles E. Hughes
*Computer Science Department, Colby College, Waterville, ME 04901-8858, USA.
fSchool of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816-2362, USA.
Partially supported by the National Science Foundation under grant EIA 9986051.

Abstract—The problems associated with Linda predi- shared memory kept Linda from being of much
cate operationsinp() and rdp() are well known but not more than academic interest. Even without a large
always well understood. One problem, from a purely aca- commercial following, the language evolved in a
demic standpoint, is that of semantic ambiguity in the case \\, nper of research contexts, including the parallel
of failure. Despite this problem, commercial tuple space
implementations all provide some version of the Linda processing Commu_n'ty' The a_ssomated analy5|s led
predicate operations, and thus, problems concerning safety t0 the removal of Linda’s predicate operations from
and liveness arise. Solutions to address these problemsthe original language definition, due to the discovery
range from proposing extensions to an existing model of of what were then viewed as semantic ambiguities.
computation (CSP) to proposing alternative definitions for Despite this scholarship and its discovery of se-

the Linda predicate operations themselves. While these 1, antics problems, when commercial Tuple Space
solutions may at first appear unrelated, it is possible to .

relate these two disparate approaches in the context of lazylmpl_ementatlons be_gan to emerge In the_late 90’s,
and eager semantics. The benefits of this characterization VErsions of the banished predicate operations found
include a clearer understanding of the Linda predicates their way back into the primitives used to ac-
ambiguity problem, two respective solutions to this prob- cess and manipulate the spaces. Thus, despite their
lem, and the importance of considering both lazy and eager known prob|ems with amb|gu|ty’ we were once
semantic pers_pe<_:tives as techniques for problem solving in again confronted with the challenge of reasoning
parallel and distributed systems. . .
about Linda programs that included dangerous pred-
icate operations. The focus of this paper is on two
CSP Iaz\’/ery different approaches to addressing the Linda
predicates ambiguity problem, and a surprising char-
acterization of these approaches as being either lazy
or eager, semantically. Notions of lazy and eager
Linda and Tuple Space based applications hagealuation are well-known within the programming
enjoyed a renaissance for the past several yedasiguages community; borrowing these concepts to
thanks to several converging factors: the Internet ahdlp us reason about a well-known problem of
World Wide Web infrastructure, the Java prograntoncurrency is admittedly unusual — and hopefully
ming language platform, and commercial Tuplpromising.
Space implementations by Sun, IBM, and others. The remainder of this paper is organized as
Linda, the language used by processes to intésHlows: Section Il provides necessary background
act in Tuple Space, emerged almost twenty yearsormation concerning Linda and Tuple Space, the
ago. During these last two decades Linda has bddnda predicate operations, and notions of lazy and
at the heart of much research. Unfortunately, tlemger semantics. Next, Section Ill presents two
challenges of implementing an efficient, distributedplutions, one lazy and one eager, to the Linda pred-

Keywords:Linda predicates, semantic ambiguity,
eager

I. INTRODUCTION

icates ambiguity problem. Finally, we summarizeepresent typed wildcards for matching. Primitives

our insights and observations in Section V. rd() and in() are synchronous, or blocking opera-
tions; out() andeval() are asynchronous.
Il. BACKGROUND The rd() and in() primitives attempt to find a

This section presents the background informatidaple in tuple space that matches their template.
required for characterizing the two solutions to thié successful, these primitives return a copy of the
Linda predicates ambiguity problem presented matching tuple by replacing any formals with actu-
Section lll. First, Section II-A gives an overviewals in their template. In addition, thiey() primitive,
of the Linda and Tuple Space model for paralleh the case of a match, removes the matching tuple
and distributed computation. Next, Section II-B ddrom tuple space. In the case of multiple matching
scribes the Linda predicate operations, including theples, a nondeterministic choice determines which
associated ambiguity problem. Finally, Section II-@iple therd() or in() operation returns. If no match
introduces the terminology and implications of lazis found, these operations block until such time

and eager semantics. as a match is found. Theut() operation places
_ a tuple in tuple space. This tuple is a copy of
A. Linda and Tuple Space the operation’s template. Primitivesi(), in(), and

The tuple space model and Linda language aset() all operate on passive tuples.
due to Gelernter [1]. Linda is distinct from pure All Linda processes reside as value-yielding com-
message passing-based models (e.g., Actors [Pitations within the active tuples in tuple space.
Unlike message passing models, tuple space exhil#itsy Linda process can create new Linda processes
what Gelernter called communication orthogonalit$hrough the eval() primitive. Execution of the
referring to interprocess communications decoupledal() operation places an active tuple in tuple
in destination, space, and time. The tuple spaspace, copied from the template. When a process
model is especially relevant to discussion of concuzempletes, it replaces itself within its respective
rency due to the current popularity of commercialiple with the value resulting from its computa-
tuple space implementations, such as Sun’s Javén. When all processes within a tuple replace
paces [3] and IBM’s T Spaces [4]. themselves with values, the formerly active tuple

Linda is not a complete programming languagéecomes passive. Only passive tuples are visible
it is @ communication and coordination languagér matching by therd() andin() primitives; thus
Linda is intended to augment existing computationattive tuples are invisible.
languages with its coordination primitives to form Communication orthogonality refers to three de-
comprehensive parallel and distributed prograrsiable attributes that seem particularly well-suited
ming languages. The Linda coordination primitivefor distributed computing. Tuple space acts as a
arerd(), in(), out(), andeval(). The idea is that conduit for the generation, use, and consumption
multiple Linda processes share a common spacé,information between distributed processes. First,
called a tuple space, through which the processadike message passing systems, where a sender
are able to communicate and coordinate using Lindaust typically specify a message’s recipient, infor-
primitives. mation generators do not need to know who their

A tuple space may be viewed as a container obnsumers will be, nor do information consumers
tuples, where a tuple is simply a group of values. Aeed to know who generated the information they
tuple is considered active if one or more of its valueonsume. Gelernter called this attributestination
is currently being computed, and passive if all afecoupling Next, since tuples are addressed asso-
its values have been computed. A Linda primitiveiatively, through matching, tuple space is a plat-
manipulates tuple space according to the templdtem independent shared memory. Gelernter called
specified in its argument. Templates represent tuptess attributespace decouplingFinally, tuples may
in a Linda program. A template extends the notidme generated long before their consumers exist,
of tuple by distinguishing its passive values as eithand tuples may be copied or consumed long after
formal or actual where formal values, oformals their generators cease to exist. Gelernter called this

attribute time decoupling Distinct from both pure with a sequential event trace leads to ambiguity for
shared memory and message passing paradigfaged Linda predicate operations.

Gelernter dubbed Linda and Tuple space to be a

form of generative communication C. Lazy versus Eager Semantics

B. Predicates and Ambiguity Lazy and eager (sometimesprmal-order and
applicative-ordey respectively) are terms typically
used to describe the semantics of particular pro-
: i : i gramming languages, especially in the context of
cluded predicate versions efi() andin(). Unlike '\ pon orocedure arguments are evaluated. But, one
the xd() gnd in() prlmltlvebsl, pkr.edlca'ge _(tqperatjrohns.nay refer more generally to expression evaluation,
rdp() andinp() were nonblocking primitives. The , 4 o+ he restricted solely to procedure arguments,

goal was to provide tuple matching capabilitieg,., referring to lazy and eager evaluation. There

without the possibility of blocking. The Linda pred-are many facets of lazy and eager evaluation, but

icate operations seemed like a useful idea, but th&{
S

In addition to the four primitivesrd(), in(),
out(), and eval(), the Linda definition once in-

) .) the purposes of this paper, we will differentiate
meaning proved to be semantically ambiguous, a purp pap

respective meanings of lazy and eager by fo-

}_heé/ V\:jer]? i_ubsequently removed from the form ing on the temporal aspects of their definitions.

mP ad‘e Itm on. i 4 t tt For a more complete discussion of lazy and eager
redicate operationsdp() and inp() attempt 10 s o ntics “see Abelson and Sussman [8].

match tuples for copy or removal from tuple space. Briefly, lazy evaluation involves delaying the
A successful operation retums the value one (?/aluation of an expression, until just before its

and the matched tuple in the form of a template. sult is needed to ensure continued computational

Eg')hfl\r,i’hrﬁf)hEL;&agsbigctlﬂg%errﬁtT;?: g]vigr?lzemzai rogress. The opposite of lazy evaluation is eager
9 plate. Oaluation, which requires the evaluation ofas

is successful, no ambiguity exists. It is not cleag

however, what it means when a predicate operati oon as it is possible to do so. From a temporal
returns a’L 2610 P P Bgrspective, the only difference between lazy and

o . : .__eager evaluation isshene gets evaluated.
The ambiguity of the Linda predicate operations ger g .
. : ~ - Notice thate need not evaluate to some native
is subtle and, in general, not well understood; it :
. : value, and could, in general, be a data structure, such
is a consequence of reasoning about concurrency_ . R
) . . as a list or tree. In the case of potentially infinite data

through an arbitrary interleaving of tuple spaceg
. : . Structures (e.g., a stream of the natural numbers),
interactions. Jensen noted that when a predicate Qp- 0 : .
eager evaluation is not feasible, as it would lead to

eration returns zero, “only if every existing procesg. .
. : : . . -divergence. In such cases, lazy evaluation offers a
is captured in an interaction point does the operation

make sense” [5]. For a complete discussion v%able alternative by supporting lazy data structures.

:) L r example, a lazy list could be represented by its
such an interaction point in tuple space, see Sm .
: ._Tirst element, and the promise to evaluate the rest
et al. [6]. For more in general about reasonin

e ; . %‘I the list, should more elements ever be needed.
with interleaved traces, see Hoare's seminal wo) .
ow, from a temporal standpoint, the difference

in Communicating Sequential Processes (CSP) [stween lazy and eager evaluation might not only

Briefly, the meaning of a failed predicate OPET&e when, buif ¢ gets evaluated. The point is, the

tion breaks down in the presence of concurrency . o
: . . oice between lazy and eager semantics in expres-
expressed as an arbitrary interleaving of atomic

events. This breakdown in meaning is due to the o eva}luat|on potentially affects the meanings of

s : . ._expressions themselves.
striction of representing the history of a computation
as a total ordering of atomic events. More specifi-
cally, within the context of a sequential event trace,
one cannot distinguish the intermediate points be-This section presents two solutions to the Linda
tween concurrent interleavings from those of evenpsedicates ambiguity problem; one by Jacob and

recorded sequentially. Reasoning about computatidfood [9], the other by Smithet al. [6]. One thing

[Il. ATALE OF TWO SOLUTIONS

both solutions have in common is their CSP foundaf deadlock — the last possible moment of compu-
tion for reasoning about the meaning of the Lind@ational progress — from a temporal perspective, we
predicate operations. These solutions are not newuld characterize Jacob and Woodlig() as lazy.
and on the surface, the approaches they take appedrhere are many more implications of this new
orthogonal to each other. It is possible, however, t@rsion of inp(). For more information, see Jacob
characterize one of these approacheszag and the and Wood [9].

other,eager Section IlI-A presents the lazy solution

by Jacob and Wood. Sectionlll-B presents the eag&r An Eager Solution

solution by Smithet al. Working from Jensen’s [5] operational semantics

A. A Lazy Solution for Linda and Tuple Space, and his observation

Jacob and Wood's goal to define "a principleab(’”t failed predicates and interaction points in
semantics for inp” arises in part out of frustratiofHP'e Space, _Smlthat al. .[6] Chos‘? a dlfferer_lt
that, despite citing seven sources giving "informdjath to disambiguate the Linda predicate operations.

specifications” for Linda predicate operations, onfjf@mely, since the source of the ambiguity was
one specification was deemed "useful’! FurtheKnOWN to be the result of constructing a compu-

more, the one useful specification, by Carriero arqation’s history from the se_q_uential interleaving of
Gelernter [10], had little or nothing to say abodfoncurrent events (as specified by CSP), we sought

the meaning of a failed predicate operation. W@ €xténd the CSP’s notion of a trace (history).
reproduce the quote here. Our extensions to CSP include unordered and

If and only if it can be shown that, ir- ordered par_allc?l e\{ents as primitiv_es for con§truc_ting
respective of relative process speeds, a a computgtlons history, and multiple, possmly im-
matching tuple must have been added to perfect, views. Taken together, these extensions to
tuple space before the execution of inp, CSP co_nstltute |mportar1t aspects of View-Centric
and cannot have been withdrawn by any R(_aas_onlng_(VCR). VCR S parallel event traces per-
other process until the inp is complete, mit disambiguating the original definitions ofp()

the predicate operations agearanteedo andrdp(). Parallel events, by their nature, capture
find a matching tuple every existing process involved in an interaction

. . oint in tuple space. Thus, parallel events permit
Jacop and Wood set out tq define, urlamb'guous"f}f‘lambiguous interpretation of the meaning of failed
what failureshouldmean forinp(). They reasoned

) A . - Linda predicate operations. Rather than introduce
that inp() should fail only in situations where it P P

could be provedin() would never find a matchin new definitions for the Linda predicate operations,
u P : n(). u) Ywe extended the model used to reason about their
tuple. Such a situation occurs only in the presen

of deadlock. In short, they changed the meaning g i?]me%all:?(sr] a more complete discussion, see

inp(), and issued the following warningifip() is

nota 'non-blocking’ version ofin() — it will block, __HOW iS Gelernters original definition olnp()

o ,
asin(), until a matching tuple is retrievedy until gager. Simply put, from a_tempo_ral perspective,
deadlock is detected” inp() always returns a value immediately, no matter
How is Jacob and Wood's new definition fo}/vhether the operation was a success or failure.
: L : Gelernter'sinp() was intended to be a non-blocking
inp() lazy? In the case of finding a matching tuple "~ -
in tuple space, it's not. However, from a temporal- - o of in() (similarly for rdp() and rd()),
ple space, y ' 2 1eMPOre 4 thus could always have been considered eager.
perspective,inp() no longer returns an indicatio

!) What's new is that it no longer needs to be consid-
of failure right away. It waits. In fact, it could wait . : .
ered ambiguous in the case of failure.

a very long time, i.e., block. So long as there isS
no matching tuple in tuple space, the only way this
version ofinp() ever returns a value is if deadlock
is detected. Sincénp() is capable of blocking, and We presented two previously unrelated solutions
only returns an indication of failure in the presenc® the Linda predicates ambiguity problem, and

IV. CONCLUSIONS

characterized them in terms of lazy and eager s@] G. A. Agha, ACTORS: A Model of Concurrent Computation

mantics. The benefits of this characterization are
threefold. First, we identified a unifying perspective;
from which to reason about the meaning of Linda

predicate operations. Second, we have a seman-
tic basis for classifying and comparing at least®
two seemingly disparate approaches to solving the
problem of Linda predicate ambiguity. Third, in al®]
broader sense, we are encouraged to revisit, through
the lens of lazy versus eager semantics, issues
of safety and liveness in parallel and distributed®]

applications.

ACKNOWLEDGEMENT

The eager solution to the Linda predicates am-
biguity problem was developed in a previous col-
laboration between the authors and Dr. Rebecca J.
Parsons. The insights into lazy and eager semal$}
tics, which permitted the revelations that led to

in Distributed Systemser. The MIT Press Series in Atrtificial
Intelligence. Cambridge, Massachusetts: The MIT Press, 1986.
E. Freeman, S. Hupfer, and K. ArnoldavaSpaces Principles,
Patterns, and Practiceser. The Jini Technology Series. Ad-
dison Wesley, 1999.

] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford,

“T spaces,”IBM Systems Journalol. 37, no. 3, pp. 454-474,
1998.

K. K. Jensen, “Towards a multiple tuple space
model,” Ph.D. dissertation, Aalborg University, Nov.
1994, http://www.cs.auc.dk/research/FS/teaching/PhD/-
mts.abstract.html.

M. L. Smith, R. J. Parsons, and C. E. Hughes, “View-centric
reasoning for linda and tuple space computation,Cmmmu-
nicating Process Architectures 2008er. Concurrent Systems
Engineering Series, J. S. Pascoe, P. H. Welch, R. J. Loader, and
V. S. Sunderam, Eds., vol. 60. Amsterdam: I0OS Press, 2002,
pp. 223-254.

] C. Hoare,Communicating Sequential Processesr. Prentice

Hall International Series in Computer Science. UK: Prentice-
Hall International, UK, Ltd., 1985.

H. Abelson and G. J. Sussmastructure and Interpretation of
Computer Programs2nd ed. Cambridge, Massachusetts: The
MIT Press, 1996.

this paper, were also developed during the sanig J. L. Jacob and A. M. Wood, “A principled semantics for inp,”

collaboration.

REFERENCES

[1] D. Gelernter, “Generative communication in lindACM Trans-
actions on Programming Languages and Systemk 7, no. 1,
Jan. 1985.

in Coordination Languages and Modekser. Lecture Notes in
Computer Science, A. Porto and G.-C. Roman, Eds., vol. 1906.
Berlin, Germany: Springer Verlag, 2000, pp. 51-65, coordina-
tion 2000: Proceedings of 4th International Conference.

N. Carriero and D. GelerntelHow to Write Parallel Programs:

a First Course MIT Press, 1990.

