
A Characterization of
Lazy and Eager Semantic Solutions to the

Linda Predicates Ambiguity Problem

Marc L. Smith∗ and Charles E. Hughes†

∗Computer Science Department, Colby College, Waterville, ME 04901-8858, USA.
†School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816-2362, USA.
Partially supported by the National Science Foundation under grant EIA 9986051.

Abstract— The problems associated with Linda predi-
cate operationsinp() and rdp() are well known but not
always well understood. One problem, from a purely aca-
demic standpoint, is that of semantic ambiguity in the case
of failure. Despite this problem, commercial tuple space
implementations all provide some version of the Linda
predicate operations, and thus, problems concerning safety
and liveness arise. Solutions to address these problems
range from proposing extensions to an existing model of
computation (CSP) to proposing alternative definitions for
the Linda predicate operations themselves. While these
solutions may at first appear unrelated, it is possible to
relate these two disparate approaches in the context of lazy
and eager semantics. The benefits of this characterization
include a clearer understanding of the Linda predicates
ambiguity problem, two respective solutions to this prob-
lem, and the importance of considering both lazy and eager
semantic perspectives as techniques for problem solving in
parallel and distributed systems.

Keywords:Linda predicates, semantic ambiguity, CSP, lazy,
eager

I. I NTRODUCTION

Linda and Tuple Space based applications have
enjoyed a renaissance for the past several years,
thanks to several converging factors: the Internet and
World Wide Web infrastructure, the Java program-
ming language platform, and commercial Tuple
Space implementations by Sun, IBM, and others.

Linda, the language used by processes to inter-
act in Tuple Space, emerged almost twenty years
ago. During these last two decades Linda has been
at the heart of much research. Unfortunately, the
challenges of implementing an efficient, distributed,

shared memory kept Linda from being of much
more than academic interest. Even without a large
commercial following, the language evolved in a
number of research contexts, including the parallel
processing community. The associated analysis led
to the removal of Linda’s predicate operations from
the original language definition, due to the discovery
of what were then viewed as semantic ambiguities.

Despite this scholarship and its discovery of se-
mantics problems, when commercial Tuple Space
implementations began to emerge in the late 90’s,
versions of the banished predicate operations found
their way back into the primitives used to ac-
cess and manipulate the spaces. Thus, despite their
known problems with ambiguity, we were once
again confronted with the challenge of reasoning
about Linda programs that included dangerous pred-
icate operations. The focus of this paper is on two
very different approaches to addressing the Linda
predicates ambiguity problem, and a surprising char-
acterization of these approaches as being either lazy
or eager, semantically. Notions of lazy and eager
evaluation are well-known within the programming
languages community; borrowing these concepts to
help us reason about a well-known problem of
concurrency is admittedly unusual — and hopefully
promising.

The remainder of this paper is organized as
follows: Section II provides necessary background
information concerning Linda and Tuple Space, the
Linda predicate operations, and notions of lazy and
eager semantics. Next, Section III presents two
solutions, one lazy and one eager, to the Linda pred-



icates ambiguity problem. Finally, we summarize
our insights and observations in Section IV.

II. BACKGROUND

This section presents the background information
required for characterizing the two solutions to the
Linda predicates ambiguity problem presented in
Section III. First, Section II-A gives an overview
of the Linda and Tuple Space model for parallel
and distributed computation. Next, Section II-B de-
scribes the Linda predicate operations, including the
associated ambiguity problem. Finally, Section II-C
introduces the terminology and implications of lazy
and eager semantics.

A. Linda and Tuple Space

The tuple space model and Linda language are
due to Gelernter [1]. Linda is distinct from pure
message passing-based models (e.g., Actors [2]).
Unlike message passing models, tuple space exhibits
what Gelernter called communication orthogonality,
referring to interprocess communications decoupled
in destination, space, and time. The tuple space
model is especially relevant to discussion of concur-
rency due to the current popularity of commercial
tuple space implementations, such as Sun’s JavaS-
paces [3] and IBM’s T Spaces [4].

Linda is not a complete programming language;
it is a communication and coordination language.
Linda is intended to augment existing computational
languages with its coordination primitives to form
comprehensive parallel and distributed program-
ming languages. The Linda coordination primitives
arerd(), in(), out(), andeval(). The idea is that
multiple Linda processes share a common space,
called a tuple space, through which the processes
are able to communicate and coordinate using Linda
primitives.

A tuple space may be viewed as a container of
tuples, where a tuple is simply a group of values. A
tuple is considered active if one or more of its values
is currently being computed, and passive if all of
its values have been computed. A Linda primitive
manipulates tuple space according to the template
specified in its argument. Templates represent tuples
in a Linda program. A template extends the notion
of tuple by distinguishing its passive values as either
formal or actual, where formal values, orformals,

represent typed wildcards for matching. Primitives
rd() andin() are synchronous, or blocking opera-
tions; out() andeval() are asynchronous.

The rd() and in() primitives attempt to find a
tuple in tuple space that matches their template.
If successful, these primitives return a copy of the
matching tuple by replacing any formals with actu-
als in their template. In addition, thein() primitive,
in the case of a match, removes the matching tuple
from tuple space. In the case of multiple matching
tuples, a nondeterministic choice determines which
tuple therd() or in() operation returns. If no match
is found, these operations block until such time
as a match is found. Theout() operation places
a tuple in tuple space. This tuple is a copy of
the operation’s template. Primitivesrd(), in(), and
out() all operate on passive tuples.

All Linda processes reside as value-yielding com-
putations within the active tuples in tuple space.
Any Linda process can create new Linda processes
through the eval() primitive. Execution of the
eval() operation places an active tuple in tuple
space, copied from the template. When a process
completes, it replaces itself within its respective
tuple with the value resulting from its computa-
tion. When all processes within a tuple replace
themselves with values, the formerly active tuple
becomes passive. Only passive tuples are visible
for matching by therd() andin() primitives; thus
active tuples are invisible.

Communication orthogonality refers to three de-
sirable attributes that seem particularly well-suited
for distributed computing. Tuple space acts as a
conduit for the generation, use, and consumption
of information between distributed processes. First,
unlike message passing systems, where a sender
must typically specify a message’s recipient, infor-
mation generators do not need to know who their
consumers will be, nor do information consumers
need to know who generated the information they
consume. Gelernter called this attributedestination
decoupling. Next, since tuples are addressed asso-
ciatively, through matching, tuple space is a plat-
form independent shared memory. Gelernter called
this attributespace decoupling. Finally, tuples may
be generated long before their consumers exist,
and tuples may be copied or consumed long after
their generators cease to exist. Gelernter called this



attribute time decoupling. Distinct from both pure
shared memory and message passing paradigms,
Gelernter dubbed Linda and Tuple space to be a
form of generative communication.

B. Predicates and Ambiguity

In addition to the four primitivesrd(), in(),
out(), and eval(), the Linda definition once in-
cluded predicate versions ofrd() andin(). Unlike
the rd() and in() primitives, predicate operations
rdp() andinp() were nonblocking primitives. The
goal was to provide tuple matching capabilities
without the possibility of blocking. The Linda pred-
icate operations seemed like a useful idea, but their
meaning proved to be semantically ambiguous, and
they were subsequently removed from the formal
Linda definition.

Predicate operationsrdp() and inp() attempt to
match tuples for copy or removal from tuple space.
A successful operation returns the value one (1)
and the matched tuple in the form of a template. A
failure, rather than blocking, returns the value zero
(0) with no changes to the template. When a match
is successful, no ambiguity exists. It is not clear,
however, what it means when a predicate operation
returns a zero.

The ambiguity of the Linda predicate operations
is subtle and, in general, not well understood; it
is a consequence of reasoning about concurrency
through an arbitrary interleaving of tuple space
interactions. Jensen noted that when a predicate op-
eration returns zero, “only if every existing process
is captured in an interaction point does the operation
make sense.” [5]. For a complete discussion of
such an interaction point in tuple space, see Smith
et al. [6]. For more in general about reasoning
with interleaved traces, see Hoare’s seminal work
in Communicating Sequential Processes (CSP) [7].

Briefly, the meaning of a failed predicate opera-
tion breaks down in the presence of concurrency
expressed as an arbitrary interleaving of atomic
events. This breakdown in meaning is due to the re-
striction of representing the history of a computation
as a total ordering of atomic events. More specifi-
cally, within the context of a sequential event trace,
one cannot distinguish the intermediate points be-
tween concurrent interleavings from those of events
recorded sequentially. Reasoning about computation

with a sequential event trace leads to ambiguity for
failed Linda predicate operations.

C. Lazy versus Eager Semantics

Lazy and eager (sometimes,normal-order and
applicative-order, respectively) are terms typically
used to describe the semantics of particular pro-
gramming languages, especially in the context of
when procedure arguments are evaluated. But, one
may refer more generally to expression evaluation,
and not be restricted solely to procedure arguments,
when referring to lazy and eager evaluation. There
are many facets of lazy and eager evaluation, but
for the purposes of this paper, we will differentiate
the respective meanings of lazy and eager by fo-
cusing on the temporal aspects of their definitions.
For a more complete discussion of lazy and eager
semantics, see Abelson and Sussman [8].

Briefly, lazy evaluation involves delaying the
evaluation of an expression,e, until just before its
result is needed to ensure continued computational
progress. The opposite of lazy evaluation is eager
evaluation, which requires the evaluation ofe as
soon as it is possible to do so. From a temporal
perspective, the only difference between lazy and
eager evaluation iswhene gets evaluated.

Notice thate need not evaluate to some native
value, and could, in general, be a data structure, such
as a list or tree. In the case of potentially infinite data
structures (e.g., a stream of the natural numbers),
eager evaluation is not feasible, as it would lead to
divergence. In such cases, lazy evaluation offers a
viable alternative by supporting lazy data structures.
For example, a lazy list could be represented by its
first element, and the promise to evaluate the rest
of the list, should more elements ever be needed.
Now, from a temporal standpoint, the difference
between lazy and eager evaluation might not only
be when, butif e gets evaluated. The point is, the
choice between lazy and eager semantics in expres-
sion evaluation potentially affects the meanings of
expressions themselves.

III. A T ALE OF TWO SOLUTIONS

This section presents two solutions to the Linda
predicates ambiguity problem; one by Jacob and
Wood [9], the other by Smith,et al. [6]. One thing



both solutions have in common is their CSP founda-
tion for reasoning about the meaning of the Linda
predicate operations. These solutions are not new,
and on the surface, the approaches they take appear
orthogonal to each other. It is possible, however, to
characterize one of these approaches aslazy, and the
other,eager. Section III-A presents the lazy solution
by Jacob and Wood. SectionIII-B presents the eager
solution by Smith,et al..

A. A Lazy Solution

Jacob and Wood’s goal to define ”a principled
semantics for inp” arises in part out of frustration
that, despite citing seven sources giving ”informal
specifications” for Linda predicate operations, only
one specification was deemed ”useful”! Further-
more, the one useful specification, by Carriero and
Gelernter [10], had little or nothing to say about
the meaning of a failed predicate operation. We
reproduce the quote here.

If and only if it can be shown that, ir-
respective of relative process speeds, a
matching tuple must have been added to
tuple space before the execution of inp,
and cannot have been withdrawn by any
other process until the inp is complete,
the predicate operations areguaranteedto
find a matching tuple.

Jacob and Wood set out to define, unambiguously,
what failureshouldmean forinp(). They reasoned
that inp() should fail only in situations where it
could be provedin() would never find a matching
tuple. Such a situation occurs only in the presence
of deadlock. In short, they changed the meaning of
inp(), and issued the following warning: ”inp() is
not a ’non-blocking’ version ofin() — it will block,
asin(), until a matching tuple is retrieved,or until
deadlock is detected.”

How is Jacob and Wood’s new definition for
inp() lazy? In the case of finding a matching tuple
in tuple space, it’s not. However, from a temporal
perspective,inp() no longer returns an indication
of failure right away. It waits. In fact, it could wait
a very long time, i.e., block. So long as there is
no matching tuple in tuple space, the only way this
version ofinp() ever returns a value is if deadlock
is detected. Sinceinp() is capable of blocking, and
only returns an indication of failure in the presence

of deadlock – the last possible moment of compu-
tational progress – from a temporal perspective, we
could characterize Jacob and Wood’sinp() as lazy.

There are many more implications of this new
version ofinp(). For more information, see Jacob
and Wood [9].

B. An Eager Solution

Working from Jensen’s [5] operational semantics
for Linda and Tuple Space, and his observation
about failed predicates and interaction points in
tuple space, Smithet al. [6] chose a different
path to disambiguate the Linda predicate operations.
Namely, since the source of the ambiguity was
known to be the result of constructing a compu-
tation’s history from the sequential interleaving of
concurrent events (as specified by CSP), we sought
to extend the CSP’s notion of a trace (history).

Our extensions to CSP include unordered and
ordered parallel events as primitives for constructing
a computation’s history, and multiple, possibly im-
perfect, views. Taken together, these extensions to
CSP constitute important aspects of View-Centric
Reasoning (VCR). VCR’s parallel event traces per-
mit disambiguating the original definitions ofinp()
and rdp(). Parallel events, by their nature, capture
every existing process involved in an interaction
point in tuple space. Thus, parallel events permit
unambiguous interpretation of the meaning of failed
Linda predicate operations. Rather than introduce
new definitions for the Linda predicate operations,
we extended the model used to reason about their
meaning. For a more complete discussion, see
Smith, et al. [6].

How is Gelernter’s original definition ofinp()
eager? Simply put, from a temporal perspective,
inp() always returns a value immediately, no matter
whether the operation was a success or failure.
Gelernter’sinp() was intended to be a non-blocking
version of in() (similarly for rdp() and rd()),
and thus could always have been considered eager.
What’s new is that it no longer needs to be consid-
ered ambiguous in the case of failure.

IV. CONCLUSIONS

We presented two previously unrelated solutions
to the Linda predicates ambiguity problem, and



characterized them in terms of lazy and eager se-
mantics. The benefits of this characterization are
threefold. First, we identified a unifying perspective
from which to reason about the meaning of Linda
predicate operations. Second, we have a seman-
tic basis for classifying and comparing at least
two seemingly disparate approaches to solving the
problem of Linda predicate ambiguity. Third, in a
broader sense, we are encouraged to revisit, through
the lens of lazy versus eager semantics, issues
of safety and liveness in parallel and distributed
applications.

ACKNOWLEDGEMENT

The eager solution to the Linda predicates am-
biguity problem was developed in a previous col-
laboration between the authors and Dr. Rebecca J.
Parsons. The insights into lazy and eager seman-
tics, which permitted the revelations that led to
this paper, were also developed during the same
collaboration.

REFERENCES

[1] D. Gelernter, “Generative communication in linda,”ACM Trans-
actions on Programming Languages and Systems, vol. 7, no. 1,
Jan. 1985.

[2] G. A. Agha, ACTORS: A Model of Concurrent Computation
in Distributed Systems, ser. The MIT Press Series in Artificial
Intelligence. Cambridge, Massachusetts: The MIT Press, 1986.

[3] E. Freeman, S. Hupfer, and K. Arnold,JavaSpaces Principles,
Patterns, and Practice, ser. The Jini Technology Series. Ad-
dison Wesley, 1999.

[4] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford,
“T spaces,”IBM Systems Journal, vol. 37, no. 3, pp. 454–474,
1998.

[5] K. K. Jensen, “Towards a multiple tuple space
model,” Ph.D. dissertation, Aalborg University, Nov.
1994, http://www.cs.auc.dk/research/FS/teaching/PhD/-
mts.abstract.html.

[6] M. L. Smith, R. J. Parsons, and C. E. Hughes, “View-centric
reasoning for linda and tuple space computation,” inCommu-
nicating Process Architectures 2002, ser. Concurrent Systems
Engineering Series, J. S. Pascoe, P. H. Welch, R. J. Loader, and
V. S. Sunderam, Eds., vol. 60. Amsterdam: IOS Press, 2002,
pp. 223–254.

[7] C. Hoare,Communicating Sequential Processes, ser. Prentice
Hall International Series in Computer Science. UK: Prentice-
Hall International, UK, Ltd., 1985.

[8] H. Abelson and G. J. Sussman,Structure and Interpretation of
Computer Programs, 2nd ed. Cambridge, Massachusetts: The
MIT Press, 1996.

[9] J. L. Jacob and A. M. Wood, “A principled semantics for inp,”
in Coordination Languages and Models, ser. Lecture Notes in
Computer Science, A. Porto and G.-C. Roman, Eds., vol. 1906.
Berlin, Germany: Springer Verlag, 2000, pp. 51–65, coordina-
tion 2000: Proceedings of 4th International Conference.

[10] N. Carriero and D. Gelernter,How to Write Parallel Programs:
a First Course. MIT Press, 1990.


