
Cooperative Rec-I-DCM3: A Population-Based
Approach for Reconstructing Phylogenies

Tiffani L. Williams
Department of Computer Science

Texas A&M University
tlw@cs.tamu.edu

Marc L. Smith
Department of Computer Science

Colby College
mlsmith@colby.edu

Abstract— In this paper, we study the use of cooper-
ation as a technique for designing faster algorithms for
reconstructing phylogenetic trees. Our focus is on the use
of cooperation to reconstruct trees based on maximum
parsimony. Our baseline algorithm is Rec-I-DCM3, the
best-performing MP algorithm known-to-date. Our results
demonstrate that cooperation does improve the perfor-
mance of the baseline algorithm by at least an order of
magnitude in terms of running time. The use of cooperation
also established a new best known score on one of our
datasets.

I. I NTRODUCTION

A phylogeny is an evolutionary history of a set or-
ganisms. Typically, it is represented by a tree, where
the leaf nodes are modern-day organisms and the edges
represent the relationships between the organisms. Phy-
logenetic analysis is used in all branches of biology with
applications ranging from studies on the origin of human
populations to investigations of the transmission patterns
of HIV [15], and beyond, with a variety of uses in
drug discovery, forensics, and security [1]. However, the
ultimate goal of phylogenetics is inferring the “Tree of
Life”, an evolutionary history of all-known organisms (or
taxa). Current estimates of the size of the “Tree of Life”
range from the millions to hundreds of million of taxa.
Thus, new fast and accurate heuristics are desperately
needed in order to have any chance of knowing the evo-
lutionary relationships that exist between all organisms.

Yet, the accurate estimation of evolutionary trees is
a very challenging computational problem. Forn taxa,
there are(2n−5)!! possible phylogenies. Hence, there
are over 13 billion possible trees for 13 taxa. Given that
it is impossible to know the true evolutionary history of
a set of organisms, the accuracy of a phylogenetic tree is
often approximated by the use of NP-hard optimization
criteria such as maximum parsimony (MP) or maximum
likelihood (ML). By far, MP is the most commonly
used criteria for reconstruction evolutionary trees [23].
It is based on Occam’s Razor, which states that the
simplest explanation that accounts for the data is the best.

Hence, the tree that explains the data with the fewest
evolutionary events (i.e., mutations) is the one that is
preferred under MP.

Currently, the best-performing MP heuristic is
Recursive-Iterative DCM3 (Rec-I-DCM3) [22], [20]. Ex-
perimental results have shown that it outperforms its
competitors by at least an order of magnitude on datasets
ranging from 500 to 14,000 organisms. Although Rec-
I-DCM3 is a good overall performer, each iteration of
the search is guided by a single tree. However, could
performance be improved if a population of trees is
utilized instead? Good performance from a search algo-
rithm is due to a balance ofexploration(the generation of
new individuals in untested regions of the search space)
and exploitation (the concentration of the search in the
vicinity of known good solutions). It is unclear if both
of these objectives can be met by a local search heuristic
that manipulates a single individual.

Memetic algorithms [16] combine a population-based
global search and an individual local search. Unlike
genetic algorithms, memetic algorithms exploit problem-
domain knowledge through the local search algorithm.
In this paper, we describe a new memetic-based tech-
nique called Cooperative Rec-I-DCM3, which maintains
a population of Rec-I-DCM3 trees to search the tree
landscape. Our algorithm is cooperative in the sense that
individuals in the population share pieces (i.e., subtrees)
of themselves to create new individuals. Moreover, the
presence of diverse solutions in the population represent
a collective effort in finding accurate trees quickly.

We study the performance of our cooperative algo-
rithm on two large biological datasets consisting of 921
and 2000 sequences. Our experimental results demon-
strate that our cooperative approach outperforms Rec-I-
DCM3 by at least an order of magnitude. Moreover, our
algorithms establishes a new best-known scores on one
of the datasets studied here.

II. M AXIMUM PARSIMONY

The MP optimization problem seeks the tree with the
minimum length, which is the smallest number of point
mutations for the data. Formally, given two sequencesa
andb of the same length, theHamming distancebetween
them is defined as|{i : ai 6= bi}| and denoted asH(a,b).
(The Hamming distance between two strings of the same
length is the number of positions in which they differ.)
Let T be a tree whose nodes are labeled by sequences
of length k over Σ, and letH(e) denote the Hamming
distance of the sequences at each endpoint of edgee.
Then theparsimony lengthof the treeT is ∑e∈E(T) H(e).
The MP problem seeks the treeT with the minimum
length; this is the same as seeking the tree with the
smallest number of point mutations for the data. MP is
an NP-hard problem [6], but the problem of assigning
sequences to internal nodes of a fixed leaf-labeled tree
is polynomial [4]. Heuristics for MP use polynomial
time solutions for scoring individual trees, along with
techniques for moving through tree space, in order to
find improved MP scores.

A. Iterative Improvement Methods

Iterative improvement methods are some of the most
popular heuristics in phylogeny reconstruction. A fast
technique is used to find an initial tree, then a local
search mechanism is applied repeatedly to find trees
with a better score. One popular local search tech-
nique is based on usingTree-Bisection and Reconnection
(TBR)[14] moves to locate better scoring trees. Figure 1
shows an example of how a tree is rearranged under
TBR. In a TBR move, an edge is removed from the given
tree T and each pair of edges touching each endpoint
merged, thereby creating two subtrees,t and T− t; the
two subtrees are then reconnected by subdividing two
edges (one in each subtree) and adding an edge between
the newly introduced nodes.

The parsimony ratchet algorithm [18] combines TBR
(Tree- Bisection and Reconnection) hill-climbing with
an interesting strategy to move out of local optima.
Parsimony ratchet is an iterative algorithm, which begins
from a “starting tree” created by the phylogenetic method
of choice. Afterwards, a ratchet iteration consists of two
searches. The first search is based on weighted MP,
where the original dataset is randomly re-weighted so
that the cost of a mutation isc instead of 1. TBR
hill-climbing is used to find the best tree under the
perturbed dataset. Once the first search gets stuck in a
local optimum, the second search begins. The original
state of the dataset is restored, and the search continues
from the best tree found during the previous search. Once

G

EB

C

A D

F

B

C

A

G

E

D

F

E

FC

B

A G

D

T

(reconnection)

(bisection)

T'

t T - t

Fig. 1. Tree-Bisection and Reconnection. Here,T is split into two
subtreest and T − t at the internal edge labeled bisection. The two
subtrees are then attached to the internal edges pointed to by the
reconnection line.T ′ represents the resulting tree.

a local optimum is reached during this search, a ratchet
iteration is complete.

B. Disk-Covering Methods

Disk-Covering Methods (DCMs) [10], [11], [17], [21],
[22] are an interesting approach to the reconstruction
of phylogenetic trees. DCMs are typically incorporated
into other existing phylogeny reconstruction techniques
to improve performance. Collectively, DCMs are an
example of divide-and-conquer algorithms that consist
of four main stages, which we briefly describe below.

First, divide the given tree into overlapping sets of
leaf nodes (taxa). By overlapping, we mean sets of taxa
with nonempty intersections. Second, solve the subprob-
lems. This means, apply the phylogeny reconstruction
technique at hand to solve each of the overlapping sets
of taxa that resulted from the first stage. Each such
solution is a tree whose leaf nodes correspond to one
of the sets of taxa from stage one. Third, merge the
solutions back together, recombining each of the solved
subtrees back into a single tree. The hope is, the resulting
tree at this stage is in someway better than the tree we
began with during the first stage. Chances are, however,
the resulting tree is also multifurcating. This presents a
problem, because many existing phylogeny reconstruc-
tion techniques require bifurcating trees. Therefore, the
fourth stage of a DCM consists of refining the tree from
stage three so that it is a bifurcation.

While all DCMs consist of the four main stages
just described, variations result from different strategies

during the first stage. We can strategize how to de-
compose subsets of taxa based on existing inter-taxa
relationship measures, such as pairwise distances; or
even leverage information from subtrees of the given
tree. Regardless of the method of decomposition (which
has a significant effect on overall performance of the
DCM), the remaining three stages all work the same
way.

III. R EC-I-DCM3

Rec-I-DCM3 [22], [20] is the most recent addition to
the DCM family. It was designed to avoid producing
large subsets, as other DCM methods are prone to do.
Subproblems produced from a very large dataset remain
too large for immediate solution by a base method.
Hence, the recursive application of the decomposition
produces smaller and smaller subproblems until every
subproblem is small enough to be solved directly. Once
the dataset is decomposed into overlapping subsets,
subtrees are constructed for each subset using the cho-
sen base method, and then combined using the Strict
Consensus Merger [10], [11] to produce a tree on the
combined dataset.

IV. COOPERATIVEREC-I-DCM3

Cooperative Rec-I-DCM3 maintains a population of
solutions to balance exploitation and exploration during a
search. Algorithm 1 presents the complete details of our
algorithm. The algorithm starts by creating a collection
of Greedy-MP starting trees which are then subjected
to TBR hill-climbing. To construct a Greedy-MP tree,
we first randomize the ordering of the sequences in the
dataset. Afterwards, the first three taxa are used to create
an unrooted binary tree,T. The fourth taxon is added to
the internal edge ofT that results in the best MP score.
This process continues until all taxa have been added to
the tree.

The remainder of the algorithm proceeds iteratively,
where each iteration consists of a local search, selection,
and recombination stage. The local search stage consists
of applying one iteration of Rec-I-DCM3 to each of the
trees in the population. During selection, the trees are
sorted based on their MP scores and placed into either
set A, B, or C, which correspond ot the best scoring
tree found so far, the topk ranking trees from iteration
i, and lower-scoring trees from iterationi, respectively.
Trees inA∪B can be considered to comprise highly fit
individuals. These trees are then recombined with trees
in C using strict consensus (see Figure 2) to create new
search points in tree space. Since the consensus tree is
typically multifurcating, the resulting consensus tree is
randomly refined (see Figure 3) and TBR hill-climbing is

Algorithm 1 Cooperative Rec-I-DCM3
1: Initialize popwith popsizeGreedy-MP + TBR trees
2: repeat
3: for i = 0 to |p|−1 do
4: popi ← Rec-I-DCM3(popi)
5: end for

{Divide pop into setsA,B, andC}
6: sortedPop← Sort(pop)
7: best← Min(best,sortedPop0)
8: A← Copy(best,nBest) {nBestcopies ofbest}
9: B←{sortedPopi : 0≤ i < nTop}

{Selectk trees fromsortedPop−B for setC}
10: k← |pop|− |A∪B|
11: C← SelectTrees(sortedPop−B,k)

{RecombineA∪B with C to create new trees}
12: for i = 0 to |C| - 1 do
13: r ← RandNum(0,1)
14: if r ≤ recombPctthen
15: tree1← SelectTrees(A∪B,1)
16: tree2←Ci

17: newTree← StrictConsensus(tree1, tree2)
18: RefinenewTreeinto a binary tree
19: Apply TBR to newTree
20: Ci ← newTree
21: end if
22: end for
23: pop← A∪B∪C
24: until Required number of iterations

applied. The above steps are repeated until the specified
number of iterations are complete.

Although Cooperative Rec-I-DCM3 can be imple-
mented on a sequential platform, our implementation
takes advantage of the natural parallelism inherent in the
algorithm. During the local search phase, each individual
in the population is assigned to a processor and Rec-I-
DCM3 is applied to it. However, the selection and re-
combination stages are executed on the same processor.

V. EXPERIMENTAL METHODOLOGY

A. Datasets

Our experiments compared the performance of the
algorithms on two biological datasets containing 921
and 2000 sequences, respectively. Below, we provide the
details of each dataset along with their best-known score
under maximum parsimony since the optimal score is not
known.

1) A set of 921 aligned Avian Cytochromeb DNA
sequences from Kevin Johnson who published it
in [12]. Roshan found a best score of 40496 on

A B C D F

newTree

E

A B C D F

tree1

E A B C D F

tree2

E

Fig. 2. Strict-consensus tree. A strict consensus preserves only those
subtrees in common between the input trees. The subtree with leavesA
andB is the only common subtree betweentree1 andtree2. However,
the trees disagree on the placement ofC,D,E, andF , which leads to
the multifurcating node shown in newTree.

A B C D F

newTree
(multifurcating)

E

A B C D F

newTree
(binary)

E

Fig. 3. Tree refinement.newTreehas one multifurcating node of
degree 4. One possible binary refinement of this node is shown by
newTree.

this dataset [20]. Our Cooperative Rec-I-DCM3
algorithm found a new best score of 40494.

2) A set of 2000 aligned Eukaryotic sRNA sequences
(1251) obtained from the Gutell Lab at the In-
stitute for Cellular and Molecular Biology, The
University of Texas at Austin. Roshan found a best
score of 74536 on this dataset [20]. Our runs of
both Rec-I-DCM3 and Cooperative Rec-I-DCM3
established a new best score of 74534.

B. Experiments

All experiments consisted of five runs of Rec-I-
DCM3 and Cooperative Rec-I-DCM3. We ran Rec-I-
DCM3 with the recommended default settings. Hence,
the maximum subproblem sizes were set to 50% (461
taxa) and 25% (500 taxa) on Datasets 1 and 2, re-

spectively. For Cooperative Rec-I-DCM3, we used the
same settings for the local search phase of the algorithm.
Both Rec-I-DCM3 and Cooperative Rec-I-DCM3 were
given sufficient time to find the best-known score. Hence,
Rec-I-DCM3 ran for 1000 iterations, and its cooperative
counterpart ran for 100 iterations with population sizes
of 2, 4, 6, and 8 trees.

We tested the Cooperative Rec-I-DCM3 with recom-
bination settings of 0% and 20%, which sets the chance
of an individual p∈C being recombined with an indi-
vidual from q∈ {A∪B}. Afterwards, the individualp is
replaced by the resulting recombined solution.

C. Performance criteria

Most studies that compare the performance of MP
algorithms use the MP score as an approximation of
the goodness of the resulting tree. Better MP scores are
thought to reflect improved accuracy of the inferred tree.
We are interested in the relationship of the best scores
found during a search and the best-known score for the
dataset. In our experiments, we compute the best score,
si , found by iterationi. We compute the number of steps,
k, thatsi is from the best-known score,b. In other words,
k = si−b.

D. Implementation

We used TCP Linda [24], an implementation of Gel-
ernter’s Linda [7] model of concurrency, to implement
our cooperative algorithm. Our TCP Linda programs
were written in the C-Linda language, which augments
the C language with four primitive operations that per-
mit process creation and access to tuple space — an
associative, distributed shared memory. Rec-I-DCM3 is
open-source software provided by Usman Roshan. TNT
was used as the base method for Rec-I-DCM3, and we
used TNT’s implementation of TBR. We used PAUP*’s
implementation of strict consensus.

E. Platforms

Our experiments were performed on two high-
performance computing clusters: an Apple Workgroup
Cluster for Bioinformatics and a Linux Beowulf cluster.
Both clusters are similarly configured, each consisting
of four, 64-bit, dual-processor nodes (eight total CPUs)
with gigabit-switched interconnects.

However, the underlying hardware of the clusters is
quite different. The Apple Workgroup Cluster consists
of Xserve G5 nodes, each of which contains two, 2
GHz PowerPC G5 processors. Each processor contains
512 KB of L2 cache and a 1 GHz front-side bus; the
two processors on each node share 4 GB of DDR 400
MHz SDRAM (16 GB total RAM across the cluster).

The Linux Beowulf cluster consists of four nodes; each
node contains two, 2 GHz Intel Xeon processors. Each
processor contains 512 KB of L2 cache, but only a 400
MHz front-side bus; the two processors on each node
share 2 GB of DDR 266 MHz SDRAM (8 GB total
RAM across the cluster).

VI. EXPERIMENTAL RESULTS

The objective of our experimental analysis is to com-
pare the performance of our cooperative algorithm with
its non-cooperative counterpart. In our tables and figures,
the popsize= 1 curve refers to Rec-I-DCM3, and larger
population sizes refer to Cooperative Rec-I-DCM3. Of
particular interest are the following questions.

1) What is the cost of maintaining a population of
solutions?

2) Can a cooperative algorithm outperform its non-
cooperative counterpart?

3) What role does recombination play in the perfor-
mance of a cooperative algorithm?

We consider each of the above questions, in turn, in the
following subsections.

A. Running Time

Table I provides the running time for Rec-I-DCM3 and
Cooperative Rec-I-DCM3. For a population size of two,
the running times are essentially the same. As there is
only one tree available for recombination, the chance of
recombination is very small. Hence, the low overhead.
However, as the population size increases so does the
overhead of using the cooperative algorithm. We should
also note that the heterogeneity of our experimental
platforms did not affect the performance. Thus, the
time per iteration of the algorithms were quite similar
regardless of which platform was used.

For a population of size eight, the overhead of using
Cooperative Rec-I-DCM3 is approximately twice that
of Rec-I-DCM3. However, this is a result of not being
able to assign the eight individuals to a separate proces-
sor. Our implementation uses additional processors to
manage the termination of the cooperative computation
and to create a new population. Thus, the maximum
number of Rec-I-DCM3 individuals we could allocate
to a separate processor was six. For populations of
size eight, some of the workers were responsible for
processing more than one tree. We should also point
out, as will be shown in later sections, that given the
overhead of using a population size of eight, it clearly
outperforms Rec-I-DCM3 by finding better scores in less
time.

Dataset 1 Dataset 2
popsize iteration (secs) total (hrs) iteration (secs) total (hrs)

1 54.00 15.00† 157.64 43.79†
2 55.08 1.53 157.68 4.38
4 58.68 1.63 184.32 5.12
6 72.00 2.00 219.96 6.11
8 114.12 3.17 335.16 9.31

TABLE I

AVERAGE RUNNING TIMES OVER FIVE RUNS FORREC-I-DCM3

(popsize= 1) AND COOPERATIVEREC-I-DCM3 USING A

RECOMBINATION SETTING OF20%. †IS THE TIME TO RUN

REC-I-DCM3 FOR 1000 ITERATIONS.

B. Rec-I-DCM3 versus Cooperative Rec-I-DCM3

Figures 4 shows the average performance of Rec-
I-DCM3 and Cooperative Rec-I-DCM3 on Dataset 1
for 100 iterations. Here, the plots show that after 40
iterations our cooperative algorithm outperforms Rec-
I-DCM3 for all population sizes. The plot also shows
that as the number of trees in the population increases,
so does the performance of the cooperative algorithm,
with a population of size eight being the best performer.
After 100 iterations, the cooperative algorithm with eight
individuals is within 7 steps of the best-known score
compared to 13 steps for Rec-I-DCM3.

Given that Cooperative Rec-I-DCM3 clearly outper-
forms its competitor over 100 iterations, we allowed Rec-
I-DCM3 to run for a total of 1000 iterations. Figure 5
shows the results. With 1000 iterations, Rec-I-DCM3
surpasses Cooperative Rec-I-DCM3 with a population
size of two. However, it cannot reach the performance of
Cooperative Rec-I-DCM3 with larger population sizes.
After 1000 iterations, Rec-I-DCM3 is 9 steps from the
best-known score, compared to 7 steps for the coopera-
tive algorithm with a population size of eight.

Figure 6 shows the performance of the algorithms on
Dataset 2. Cooperative Rec-I-DCM3 outperforms Rec-I-
DCM3 at every iteration. By iteration 60, all five runs
of the Cooperative Rec-I-DCM3 with eight individuals
have found the best-known score. Again, we allow Rec-
I-DCM3 to run for 1000 iterations to see if it can surpass
the performance of the cooperative algorithm at 100
iterations. Rec-I-DCM3 does surpass the performance
of the cooperative algorithm with a population of size 2.
However, it cannot reach the performance of Cooperative
Rec-I-DCM3 with larger population sizes.

Table II shows the number of Rec-I-DCM3 and Coop-
erative Rec-I-DCM3 runs that find the best-known score.
For Dataset 1, we see that Cooperative Rec-I-DCM3 with
a population size of 6 is able to find the best-known
score. For dataset 2, all algorithms were able to find the

iterations

be
st

 s
co

re
 in

 p
op

ul
at

io
n

(s
te

ps
)

●

●
● ● ● ● ● ● ● ● ●

1 10 20 30 40 50 60 70 80 90 100

1

5

10

50

100
● popsize = 1

popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 4. The performance of Rec-I-DCM3 and Cooperative Rec-I-
DCM3 on Dataset 1 (921 taxa) over 100 iterations. Thepopsize= 1
curve corresponds to Rec-I-DCM3, whereas the other curves corre-
spond to Cooperative Rec-I-DCM3 using various population sizes. The
y-axis is on a log-scale.

iterations

be
st

 s
co

re
 in

 p
op

ul
at

io
n

(s
te

ps
)

●

●

●

● ● ●
● ● ● ● ● ● ●

● ●
●

1 5 10 50 100 500 1000

1

5

10

50

100
● popsize = 1

popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 5. Extending the runs of Rec-I-DCM3 for 1000 iterations on
Dataset 1 (921 taxa). Cooperative Rec-I-DCM3 ran for 100 iterations.
The popsize= 1 curve corresponds to Rec-I-DCM3, whereas the
other curves correspond to Cooperative Rec-I-DCM3 using various
population sizes. Both axes are on a log-scale.

iterations

be
st

 s
co

re
 in

 p
op

ul
at

io
n

(s
te

ps
)

●

●
●

● ● ● ● ● ● ● ●

1 10 20 30 40 50 60 70 80 90 100

1

5

10

50

100
● popsize = 1

popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 6. The performance of Rec-I-DCM3 and Cooperative Rec-I-
DCM3 on Dataset 2 (2000 taxa) for 100 iterations. Thepopsize= 1
curve corresponds to Rec-I-DCM3, whereas the other curves corre-
spond to Cooperative Rec-I-DCM3 using various population sizes.
Since the y-axis is plotted on a log scale, scores that are 0 steps from
the best-known score are undefined. Hence, thepopsize= 8 curve is
undefined after iteration 60 since it reaches the best-known score.

popsize Dataset 1 Dataset 2
1 0 1
2 0 0
4 0 1
6 1 2
8 0 5

TABLE II

NUMBER OF RUNS FINDING THE BEST-KNOWN SCORE

REC-I-DCM3 (popsize=1) AND COOPERATIVEREC-I-DCM3.

best-known score, except for Cooperative Rec-I-DCM3
with a population of two. Cooperative Rec-I-DCM3 with
a population size of 8 was able to find the best-known
score over all 5 runs.

C. Improvement under recombination

Figures 8 and 9 shows the effect of using arecom-
bination operator on Datasets 1 and 2, respectively. On
Dataset 1, recombination helps during the early stages
of the search, but afterwards, it is more advantageous
not to use recombination. However, on Dataset 2, with a
population size of 4 and 8, recombination improves the
performance of the algorithm. Yet, recombination seems
to hurt the algorithm for population sizes of two and six.

iterations

be
st

 s
co

re
 in

 p
op

ul
at

io
n

(s
te

ps
)

●

●

●
● ●

●
●

● ● ● ●

●
● ●

● ●

1 5 10 50 100 500 1000

1

5

10

50

100
● popsize = 1

popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 7. Extending the runs of Rec-I-DCM3 for 1000 iterations on
Dataset 2 (2000 taxa). Cooperative Rec-I-DCM3 ran for 100 iterations.
The popsize= 1 curve corresponds to Rec-I-DCM3, whereas the other
curves correspond to Cooperative Rec-I-DCM3 using various popula-
tion sizes. Both axes are plotted on a log-scale, and are undefined at
0. Hence, thepopsize= 8 curve is undefined after iteration 60 since
it reaches the best-known score.

VII. R ELATED WORK AND DISCUSSION

The results from our experiments show that our coop-
erative algorithm results in improved performance when
compared to Rec-I-DCM3. The success of our approach
can be attributed to using a high-performance local
search algorithm such as Rec-I-DCM3 as the basis for
constructing a population of diverse individuals to guide
the search. Moreover, our results demonstrate that large
population sizes are not needed in order to see improved
performance. Even with a population consisting of two
individuals, our cooperative algorithm finds better scores
much faster than Rec-I-DCM3. Since good performance
can be achieved while using a very small population of
individuals, the implementation of Cooperative Rec-I-
DCM3 is quite feasible on sequential platforms.

Population-based approaches such as genetic algo-
rithms have also been applied to maximum likelihood
(ML) methods [2], [3], [5], [13]. Unfortunately, the
performance of these genetic algorithms are often not
compared to the top performing ML algorithms that
manipulate a single individual, which include fastD-
NAML [19], MrBayes [9], and PHYML [8]. Thus, it
is difficult to evaluate the performance of the algorithms
when the top competitors are missing. Here, we explic-

iterations

im
pr

ov
em

en
t u

nd
er

 r
ec

om
bi

na
tio

n
(s

te
ps

)

1 10 20 30 40 50 60 70 80 90 100

−8

−4

0

4

8
popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 8. Improvement gained by using recombination to create new
trees on Dataset 1. The y-axis indicates the steps of improvement
gained under Cooperative Rec-I-DCM3 by using a recombination
operator. Thus, positive (negative) values indicate that recombination
improves (worsens) the performance of the algorithm when compared
to using Cooperative Rec-I-DCM3 without recombination.

iterations

im
pr

ov
em

en
t u

nd
er

 r
ec

om
bi

na
tio

n
(s

te
ps

)

1 10 20 30 40 50 60 70 80 90 100

−8

−4

0

4

8
popsize = 2
popsize = 4
popsize = 6
popsize = 8

Fig. 9. Improvement gained by using recombination to create new
trees on Dataset 2. The y-axis indicates the steps of improvement
gained under Cooperative Rec-I-DCM3 by using a recombination
operator. Thus, positive (negative) values indicate that recombination
improves (worsens) the performance of the algorithm when compared
to using Cooperative Rec-I-DCM3 without recombination.

itly compare our cooperative algorithm to Rec-I-DCM3,
which is the best MP algorithm available. Moreover,
Rec-I-DCM3 has been extensively tested against other
MP approaches such as TNT and parsimony ratchet and
has consistently outperformed them on large datasets.

VIII. C ONCLUSIONS

We have presented a new algorithm called Cooper-
ative Rec-I-DCM3 that convincingly outperforms Rec-
I-DCM3, the best performing MP heuristic to date, by
at least an order of magnitude. Moreover, the algorithm
improved upon the best-known scores for the datasets
studied here. Our algorithm utilizes a population of
trees, which cooperatively search through tree space by
sharing pieces (i.e., subtrees) of themselves to create new
individuals. The diversity of solutions in the population
allows our algorithm to maintain a balance between
two contradictory search objectives: exploitation and
exploration.

Yet, the most exciting aspect of our study is the
wide applicability of employing cooperative searches
to reconstruct evolutionary trees. Here, we limited our
study to improving the performance of Rec-I-DCM3.
However, the performance of other MP approaches such
as parsimony ratchet, TBR hill-climbing, or a hetero-
geneous mixture of methods should benefit from our
cooperative search framework. We also plan to inves-
tigate other techniques for selecting and recombining
individuals. Lastly, although maximum parsimony was
the focus of this study, our approach should be applicable
to maximum likelihood as well.

IX. A CKNOWLEDGMENTS

Most of this work was done while Williams was at the
Radcliffe Institute of Advanced Study, and Smith was on
sabbatical leave from Colby College. The authors would
also like to thank Usman Roshan for providing the code
for Rec-I-DCM3 and the datasets to use for this study.

REFERENCES

[1] D. Bader, B. M. Moret, and L. Vawter. Industrial applications
of high-performance computing for phylogeny reconstruction. In
H. Siegel, editor,Proceedings of SPIE Commercial Applications
for High-Performance Computing, volume 4528, pages 159–168,
Denver, CO, Aug. 2001. SPIE.

[2] M. J. Brauer, M. T. Holder, L. A. Pries, D. J. Zwickl, P. O. Lewis,
and D. M. Hillis. Genetic algorithms and parallel processing
in maximum-likelihood phylogeny inference.Mol. Biol. Evol.,
19(10):1717–1726, 2002.

[3] C. B. Congdon. Gaphyl: An evolutionary algorithms approach
for the study of natural evolution. InGenetic and Evolutionary
Computation Conference (GECCO-2002), New York, NY, July
2002.

[4] W. M. Fitch. Toward defining the course of evolution: minimal
change for a specific tree topology.Syst. Zool., 20:406–416,
1971.

[5] A. G. A. for Maximum-Likelihood Phylogeny Inference Using
Nucleotide Sequence Data. The metapopulation genetic algo-
rithm: An efficient solution for the problem of large phylogeny
estimation.Mol. Biol. Evol., 15(3):277–283, 1998.

[6] L. R. Foulds and R. L. Graham. The Steiner problem in
phylogeny is NP-complete.Advances in Applied Mathematics,
3:43–49, 1982.

[7] D. Gelernter. Generative communication in linda.ACM Transac-
tions on Programming Languages and Systems, 7(1), Jan. 1985.

[8] S. Guindon and O. Gascuel. A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum likelihood.
Syst. Biol., 52(5):696–704, 2003.

[9] J. P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian
inference of phylogenetic trees.Bioinformatics, 17(8):754–755,
2001.

[10] D. Huson, S. Nettles, and T. Warnow. Disk-covering, a fast-
converging method for phylogenetic tree reconstruction.Journal
of Computational Biology, 6:369–386, 1999.

[11] D. Huson, L. Vawter, and T. Warnow. Solving large scale
phylogenetic problems using DCM2. InProc. 7th Int’l Conf.
on Intelligent Systems for Molecular Biology (ISMB’99), pages
118–129. AAAI Press, 1999.

[12] K. P. Johnson. Taxon sampling and the phylogenetic position of
passeriformes: Evidence from 916 avian cytochrome b sequences.
Systematic Biology, 50(1):128–136, 2001.

[13] A. R. Lemmon and M. C. Milinkovitch. The metapopulation
genetic algorithm: An efficient solution for the problem of large
phylogeny estimation.PNAS, 99(16):10516–10521, 2002.

[14] D. Maddison. The discovery and importance of multiple island
of most parsimonous trees.Syst. Bio., 42(2):200–210, 1991.

[15] M. L. Metzker, D. P. Mindell, X.-M. Liu, R. G. Ptak, R. A. Gibbs,
and D. M. Hillis. Molecular evidence of HIV-1 transmission in
a criminal case.PNAS, 99(2):14292–14297, 2002.

[16] P. A. Moscato. On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memtic algorithms. Technical
report, Caltech, 1989.

[17] L. Nakhleh, U. Roshan, K. St. John, J. Sun, and T. Warnow.
Designing fast converging phylogenetic methods. InProc.
9th Int’l Conf. on Intelligent Systems for Molecular Biology
(ISMB’01), volume 17 of Bioinformatics, pages S190–S198.
Oxford Univeristy Press, 2001.

[18] K. C. Nixon. The parsimony ratchet, a new method for rapid
parsimony analysis.Cladistics, 15:407–414, 1999.

[19] G. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastdnaml:
A tool for construction of phylogenetic trees of DNA sequences
using maximum likelihood. Comput. Appl. Biosci., 10:41–48,
1994.

[20] U. Roshan.Algorithmic Techniques for Improving the Speed and
Accuracy of Phylogenetic Methods. PhD thesis, The University
of Texas at Austin, May 2004.

[21] U. Roshan, B. M. Moret, T. Warnow, and T. L. Williams.
Performance of supertree methods on various dataset decompo-
sitions. In O. Bininda-Emonds, editor,Phylogenetic Supertrees:
Combining information to reveal the Tree of Life,, pages 301–
328. Kluwer Acad. Publ., Dordrecht, 2004.

[22] U. Roshan, B. M. E. Moret, T. L. Williams, and T. Warnow.
Rec-I-DCM3: a fast algorithmic techniques for reconstructing
large phylogenetic trees. InProc. IEEE Computer Society
Bioinformatics Conference (CSB 2004), pages 98–109. IEEE
Press, 2004.

[23] M. Sanderson, B. Baldwin, G. Bharathan, C. Campbell, D. Fer-
guson, J. Porter, C. V. Dohlen, M. Wojciechowski, and
M. Donoghue. The growth of phylogenetic information and the
need for a phylogenetic database.Systematic Biology, 42:562–
568, 1993.

[24] Scientific Computing Associates, Inc. Tcp linda. Internet
Website, last accessed, July 2005. SCAI’s TCP Linda URL:
http://www.lindaspaces.com/products/linda.html.

