Integrate-and-Fire Models Pure Integrate-and Fire Leaky Integrate-and Fire Absolute Refractory Period Non-Spiking Models Integrating Non-Integrating

1 Model Abstraction

Orjan Ekeberg	Brain Modeling and Machine Learning	
Model Abstraction		
Intervets and Fire Madela		
integrate-and-Fire Wodels		
Non-Spiking Models		

Brain Modeling and Machine Learning

Model Abstraction Integrate-and-Fire Models Non-Spiking Models

Örjan Ekeberg

There are too many things going on in real neurons

1 Model Abstraction

Integrate-and-Fire Models

- Pure Integrate-and Fire
- Leaky Integrate-and Fire
- Absolute Refractory Period

3 Non-Spiking Models

- Integrating
- Non-Integrating

Model Abstraction

Remove irrelevant details while preserving relevant properties

What properties are important to preserve?

- Dendrites Passive reception of signals
- Soma (Cell Body) Summing, Thresholding

Pure Integrate-and FireLeaky Integrate-and Fire

• Integrating

• Non-Integrating

• Absolute Refractory Period

• Axon

Aktive pulses are transmitted to other cells

Early attempt: McCulloch and Pitts model (1943)

- Two output states: spike or no spike
- No time dynamics, immediate response
- Sufficient number of excitatory input spikes required
- Inhibitory input completely blocks output

Note similarity with digital electronics (gates)

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Model Abstraction Integrate-and-Fire Models	Pure Integrate-and Fire Leaky Integrate-and Fire	Model Abstraction Integrate-and-Fire Models	Pure Integrate-and Fire Leaky Integrate-and Fire
Non-Spiking Models	Absolute Refractory Period	Non-Spiking Models	Absolute Refractory Period
Model Abstraction		Intrgrate-and-Fire Models	
		Point neuron model with simplifie	d spikes
		Point neuron model with simpline	u spikes
2 Integrate-and-Fire Models			

- Ignore the precise action potential mechanisms
 - Assume linear summation of inputs
 - Assume that each incoming spike contributes a constant amount of charge (current pulse)

Reasonable objective

Produce the right spiking frequency for different input levels

Pure Integrate-and Fire Leaky Integrate-and Fire Absolute Refractory Period

What spiking frequency will this model produce?

Replace Na/K mechanism with a simple reset mechanism

• Point neuron style integration of input

$$C\frac{dV}{dt} = d$$

• Reset Mechanism

Idea

When V reaches a threshold, Θ , the cell fires and V is reset to zero.

Constant input current

V

 $C\frac{dV}{dt} = I$

• Time to reach threshold

$$T = \frac{\Theta C}{I}$$

• Firing frequency for constant current

$$f = \frac{1}{T} = \frac{I}{\Theta C}$$

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Model Abstraction	Pure Integrate and Fire	Model Abstraction	Pure Integrate-and Fire
Integrate-and-Fire Models	Leaky Integrate-and Fire	Integrate-and-Fire Models	Leaky Integrate-and Fire
Non-Spiking Models	Absolute Refractory Period	Non-Spiking Models	Absolute Refractory Period

• Re-introduce the *leak* current

$$C\frac{dV}{dt} = -GV + I$$

Standard form

$$\tau \frac{dV}{dt} = -V + RI$$

• Time to reach threshold

$$T = \tau \ln \frac{RI}{RI - \Theta}$$

• Firing frequency

$$f = \frac{1}{\tau \ln \frac{RI}{RI - \Theta}}$$

Shortcomings of the pure Integrate-and-Fire model

- Infinite "memory" of old inputs
- No silence for low input levels

More realistic alternative: Leaky Integrate-and-Fire Model

Pure Integrate-and Fire
Leaky Integrate-and Fire
Absolute Refractory Period

Absolute Refractory Period

Time after a spike when no new spike can be generated, regardless of input

- Model version: Absolute delay, *Delta*, before integration starts after a reset
- Firing frequency

$$f = rac{1}{\Delta + T} = rac{1}{\Delta + au \ln rac{Rl}{Rl - \Theta}}$$

Örjan Ekeberg Brain M	lodeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Model Abstraction Integrate-and-Fire Models Non-Spiking Models	ing egrating	Model Abstraction Integrate-and-Fire Models Non-Spiking Models	Integrating Non-Integrating

Ι

1 Model Abstraction

2 Integrate-and-Fire Models

- Pure Integrate-and Fire
- Leaky Integrate-and Fire
- Absolute Refractory Period

3 Non-Spiking Models

- Integrating
- Non-Integrating

If actual spikes are irrelevant, can't we simply use a scalar output value represeting the frequency?

• Leaky integrator

$$\tau \frac{dA}{dt} = I - A$$

• Squashing function

 $f = \phi(A)$

Common squashing functions

Standard model used in most Artificial Neural Networks

Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning