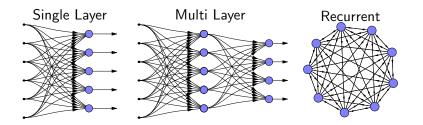

Linear Layered Networks

2 Linear Feed-Forward Networks

What can they Compute?Hebbs Learning Hypothesis

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Artificial Neural Networks Linear Feed-Forward Networks What can they Compute?	Connection Topologies Learning Principles	Artificial Neural Networks Linear Feed-Forward Networks What can they Compute?	Connection Topologies Learning Principles
		Connection Topologies	


Artificial Neural Networks

- Connection Topologies
- Learning Principles

2 Linear Feed-Forward Networks

3 What can they Compute?

• Hebbs Learning Hypothesis

Artificial Neural Networks Linear Feed-Forward Networks What can they Compute? Learning Principles	Artificial Neural Networks Linear Feed-Forward Networks What can they Compute?
 Coincidence Detection Error Correction Competitive Learning 	 Artificial Neural Networks Connection Topologies Learning Principles 2 Linear Feed-Forward Networks 3 What can they Compute? Hebbs Learning Hypothesis
Örjan Ekeberg Brain Modeling and Machine Learning Artificial Neural Networks Hebbs Learning Hypothesis Linear Feed-Forward Networks Hebbs Learning Hypothesis Linear Feed-Forward Networks Hebbs Learning Hypothesis	Örjan Ekeberg Brain Modeling and Machine Learning Artificial Neural Networks Hebbs Learning Hypothesis Linear Feed-Forward Networks Hebbs Learning Hypothesis Linear Feed-Forward Networks Ketworks Vhat can they Compute? Hebbs Learning Hypothesis
	Cascaded Linear Networks
What can be computed by a linear network? $x_{1} \leftarrow w_{1}$ $x_{2} \leftarrow w_{2}$ $x_{3} \leftarrow w_{4}$ $x_{5} \leftarrow w_{5}$ w_{5} w_{5} w_{5} $w_{1} \leftarrow w_{1}$ $x_{1} \leftarrow w_{1}$ $x_{2} \leftarrow w_{1}$ $x_{2} \leftarrow w_{1}$ $x_{3} \leftarrow w_{1}$ $x_{4} \leftarrow w_{4}$ $x_{5} \leftarrow w_{5}$ w_{5}	
$y = \vec{w}^T \cdot \vec{x} \qquad \qquad \vec{y} = W \vec{x}$	$\vec{y} = W_3(W_2(W_1\vec{x})) = (W_3W_2W_1)\vec{x}$

 \vec{w} — Weight Vector W — Weight Matrix

Still a linear mapping

Let $W = W_3 W_2 W_1 \quad \Rightarrow \quad \vec{y} = W \vec{x}$

Storing Mappings

The "program" resides in the weights How do we find the right weights? Learning \approx Change the weights to achieve better performance

Hebbs Learning Hypothesis

Simultaneous activation of two neurons strengthens the synaptic connection between them

Common interpretation:

$$\Delta w_{ij} = x_j y_i$$

Note! Outer Product

Brain Modeling and Machine Learning

Storing Mappings

Storing a mapping using Hebbs rule

$$\vec{x}_1 \rightarrow \vec{y}_1 \qquad \vec{x}_2 \rightarrow \vec{y}_2 \qquad \vec{x}_3 \rightarrow \vec{y}_3 \quad \cdots$$

Hebbs rule

 $\Delta w_{ij} = x_j y_i$

Result

$$W = \sum_{p} \vec{y}_{p} \vec{x}_{p}$$

Örjan Ekeberg

Correlation Memory

Örjan Ekeberg Brain Modeling and Machine Learning

Artificial Neural Networks Linear Feed-Forward Networks What can they Compute?

Storing Mappings

Retrieving a Memory Trace

$$W = \sum_{p} \vec{y}_{p} \vec{x}_{p}^{T}$$
$$\vec{x}_{k} \to ?$$

$$\vec{y}_{\text{out}} = W \vec{x}_k = \sum_p (\vec{y}_p \vec{x}_p^T) \vec{x}_k = \sum_p \vec{y}_p (\vec{x}_p^T \vec{x}_k) =$$
$$= \vec{y}_k (\vec{x}_k^T \vec{x}_k) + \sum_{p \neq k} \vec{y}_p (\vec{x}_p^T \vec{x}_k) \approx \alpha \vec{y}_k$$

• Perfect memory if the patterns \vec{x}_p are orthogonal