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Coincidence Detection
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What can be computed by a linear network?
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y = ~wT · ~x

~w — Weight Vector
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~y = W~x

W — Weight Matrix
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Cascaded Linear Networks

~y = W3(W2(W1~x)) = (W3W2W1)~x

Let W = W3W2W1 ⇒ ~y = W~x

Still a linear mapping
Örjan Ekeberg Brain Modeling and Machine Learning



Artificial Neural Networks
Linear Feed-Forward Networks

What can they Compute?
Hebbs Learning Hypothesis

Storing Mappings

The ”program” resides in the weights
How do we find the right weights?
Learning ≈ Change the weights to achieve better performance

Hebbs Learning Hypothesis

Simultaneous activation of two neurons
strengthens the synaptic connection between them

Common interpretation:

∆wij = xjyi

Note! Outer Product
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Storing Mappings

Storing a mapping using Hebbs rule

~x1 → ~y1 ~x2 → ~y2 ~x3 → ~y3 · · ·

Hebbs rule
∆wij = xjyi

Result
W =

∑
p

~yp~x
T
p

Correlation Memory
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Storing Mappings

Retrieving a Memory Trace

W =
∑
p

~yp~x
T
p

~xk → ?

~yout = W~xk =
∑
p

(~yp~x
T
p )~xk =

∑
p

~yp(~xT
p ~xk) =

= ~yk(~xT
k ~xk) +

∑
p 6=k

~yp(~xT
p ~xk) ≈ α~yk

Perfect memory if the patterns ~xp are orthogonal
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