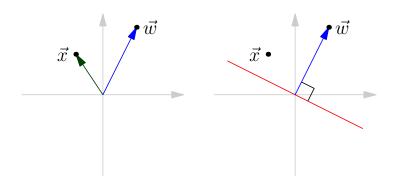



| Örjan Ekeberg                                      | Brain Modeling and Machine Learning        | Örjan Ekeberg                                 | Brain Modeling and Machine Learning        |
|----------------------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------------------|
|                                                    |                                            |                                               |                                            |
| Thresholded Single-Layer Networks<br>Learning      | Classification Capabilities<br>Limitations | Thresholded Single-Layer Networks<br>Learning | Classification Capabilities<br>Limitations |
|                                                    |                                            | Thresholded Neurons                           |                                            |
|                                                    |                                            |                                               |                                            |
|                                                    |                                            | TLU — Threshold Logic Unit                    |                                            |
| <ol> <li>Thresholded Single-Layer Netwo</li> </ol> | orks                                       | <i>T</i>                                      |                                            |

- Classification Capabilities
- Limitations

#### 2 Learning

- Perceptron Learning
- Delta Rule




$$y = \begin{cases} 1 & \text{when } \sum_{i} w_{i} x_{i} > \theta \\ 0 & \text{otherwise} \end{cases}$$

- Binary output
- Classifies input patterns

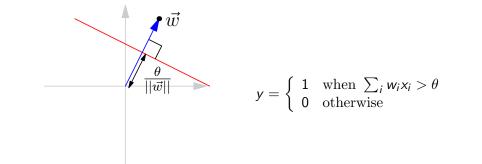
# Classification Capabilities

How does the classification work?



Linear Separation

| Örjan Ekeberg                                 | Brain Modeling and Machine Learning        |               |
|-----------------------------------------------|--------------------------------------------|---------------|
|                                               |                                            |               |
|                                               |                                            |               |
| Thresholded Single-Layer Networks<br>Learning | Classification Capabilities<br>Limitations | Thresholded S |
| Classification Capabilities                   |                                            | Limitations   |


Important trick: The variable threshold can be substituted by an extra weight from a constant input

$$\sum_{i} w_{i} x_{i} > heta$$
 $w_{0} \cdot 1 + \sum_{i} w_{i} x_{i} > 0$   $w_{0} = - heta$ 

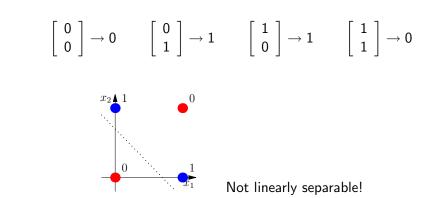
Why? Regulation of the threshold does not have to be treated as a special case

## **Classification** Capabilities

Regulation of the threshold  $\theta$ 



Brain Modeling and Machine Learning


Limitations

The separating hyper-plane can be arbitrarily positioned

Örjan Ekeberg

le-Laver Networks

Can all groups of patterns be separated? Classical counter-example: Exclusive OR (XOR)



#### Thresholded Single-Layer Networks Learning Delta Rule

# Perceptron Learning

Training of a Thresholded Network: Perceptron Learning Basic Principle: Weights are changed whenever a pattern is erroneously classified

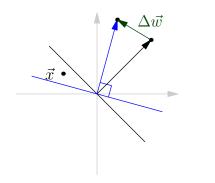
When the result = 0, should be = 1

 $\Delta \vec{w} = \eta \vec{x}$ 

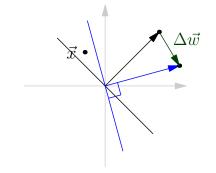
When the result = 1, should be = 0

 $\Delta \vec{w} = -\eta \vec{x}$ 




| Thresholded Single-Layer Networks<br>Learning | Perceptron Learning<br>Delta Rule |
|-----------------------------------------------|-----------------------------------|
| Perceptron Learning                           |                                   |

Brain Modeling and Machine Learning


| Thresholded Single-Layer Networks | Perceptron Learning |
|-----------------------------------|---------------------|
| Learning                          | Delta Rule          |
| Perceptron Learning               |                     |

When the result = 0, should be = 1:  $\Delta \vec{w} = \eta \vec{x}$ 

Örjan Ekeberg







# Classification CapabilitiesLimitations

1 Thresholded Single-Layer Networks

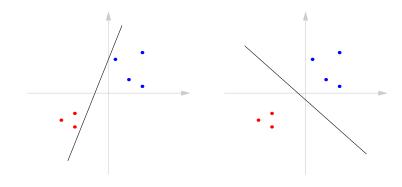
#### 2 Learning

• Perceptron Learning

• Delta Rule

### Perceptron Learning

Problem: Learning terminates unnecessarily early


#### Convergence Theorem

If a solution exists for a finite training dataset then perceptron learning always converges after a finite number of steps

Örjan Ekeberg

Independent of step size  $(\eta)$ 

Delta Rule



Bad when patterns are only approximately similar to those used during training

Örjan Ekeberg Brain Modeling and Machine Learning

Delta Rule

hresholded Single-Laye

### Delta Rule

Minimize the cost-function

$$\mathcal{E} = \frac{e^2}{2}$$

Simple algorithm: Steepest Decent Gradient = direction in which the error increases most Steepest Decent  $\Rightarrow$  Move in the opposite direction Gradient direction:

Learning

$$\frac{\partial \mathcal{E}}{\partial \vec{w}} = e \frac{\partial e}{\partial \vec{w}} = e \frac{\partial (t - \vec{w}^T \vec{x})}{\partial \vec{w}} = -e \vec{x}$$

Delta Rule:

 $\Delta \vec{w} = \eta e \vec{x}$ 

olded Single-Layer Networks Perceptron Learning Delta Rule

Brain Modeling and Machine Learning

Delta-rule (Widrow-Hoff rule) Use symmetric target values  $\{-1, 1\}$ Measure the error before thresholding

$$e = t - \vec{w}^T \vec{x}$$

Find the weights which minimize the cost-function

$$\mathcal{E} = \frac{e^2}{2}$$

Thresholded Single-Layer Networks Learning Delta Rule

# Training of Thresholded Single-Layer Networks

• Perceptron Learning

$$\Delta \vec{w} = \eta e \vec{x}$$
 where  $e = t - y$ 

• Delta Rule

$$\Delta \vec{w} = \eta e \vec{x} \qquad \text{where } e = t - \vec{w}^T \vec{x}$$

Örjan Ekeberg Brain Modeling and Machine Learning