
Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Learning by

Error Back-Propagation

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

1 Training Multi-Layered Networks

2 Using Smooth Functions
Error Minimization
Error Gradient

3 Error Back-Propagation
Things to Be Aware Of

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Training Multi-Layered Networks

How can we train a multi layer network?

Perceptron Learning
Requires that we know in which direction the weights should
be changed to come nearer the solution.
Does not work!

Delta Rule
Requires that we can measure the error before thresholding,
but this only works for the last layer.
Does not work!

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Training Multi-Layered Networks

Dilemma:

Thresholding destroys information needed for learning

Without thresholding we loose the advantage of multiple
layers

Solution

Use threshold-like but differentiable squashing functions

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

Using Smooth Functions

Two commonly used squashing functions ϕ(
∑

)

y

x

ϕ(x) =
1− e−x

1 + e−x

y

x

ϕ(x) = arctan(x)

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

Generalization of the Delta Rule:

1 Choose a cost function ε

ε =
1

2
||~t − ~y ||2 =

1

2

∑
k

(tk − yk)2

2 Minimize it using Steepest Decent
Compute the gradient, i.e.

∂ε

∂vji
and

∂ε

∂wkj

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

wkj

vji

xi

hj

yk

hin
j

yin
k

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

First case: derivative w.r.t. a weight wkj in the second layer

∂ε

∂wkj
=

∂ε

∂yk
· ∂yk

∂wkj

= −(tk − yk) ·
∂ϕ(y in

k)

∂wkj

= −(tk − yk) · ϕ′(y in
k) ·

∂y in
k

∂wkj

= −(tk − yk) · ϕ′(y in
k) · hj

= −δkhj

Here we have introduced δk = (tk − yk) · ϕ′(y in
k)

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

Second case: derivative w.r.t. a weight vkj in the first layer

∂ε

∂vji
=

∑
k

∂ε

∂yk
· ∂yk

∂vji

= −
∑
k

(tk − yk) · ∂yk

∂vji

= −
∑
k

(tk − yk) · ϕ′(y in
k) ·

∂y in
k

∂vji

= −
∑
k

δk ·
∂y in

k

∂vji

= −
∑
k

δk · wkj ·
∂hj

∂vji

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

We continue. . .

∂ε

∂vji
= −

∑
k

δk · wkj ·
∂hj

∂vji

= −
∑
k

δk · wkj · ϕ′(hin
j) ·

∂hin
j

∂vji

= −
∑
k

δk · wkj · ϕ′(hin
j) · xi

= −δjxi

Here we have introduced δj =
∑

k δk · wkj · ϕ′(hin
j)

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Error Minimization
Error Gradient

Summary

∂ε

∂wkj
= −δkhj where δk = (tk − yk) · ϕ′(y in

k)

∂ε

∂vji
= −δjxi where δj =

∑
k

δk · wkj · ϕ′(hin
j)

Gradient Decent

∆wkj = ηδkhj

∆vji = ηδjxi

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Things to Be Aware Of

Error Back-Propagation

1 Forward Pass: Compute all hj and yk

hj = ϕ(
∑

i

vjixi) yk = ϕ(
∑

j

wkjhj)

2 Backward Pass: Compute all δk and δj

δk = (tk − yk) · ϕ′(y in
k) δj =

∑
k

δk · wkj · ϕ′(hin
j)

3 Weight Updating:

∆wkj = ηδkhj ∆vji = ηδjxi

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Things to Be Aware Of

Things to Be Aware Of

Problems with BackProp

Does not always converge (gets stuck in local minima)

Slow convergence

Many parameters need to be tuned

Bad scaling behavior for large problems

Biologically unrealistic

Backward propagating signal
Requires known target values

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Things to Be Aware Of

Things to Be Aware Of

Tips when using BackProp

Use an antisymmetric ϕ(x)

Put the target values ~t inside the domain interval of ϕ

Order or weigh the training examples so the hard examples
dominate

Choose smart initial weights

Introduce momentum in the weight updating

Add random noise to the weights during training

Remove the squashing-function (ϕ(x)) for the output units

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Things to Be Aware Of

Things to Be Aware Of

Preprocessing of input patterns

1 Subtract the average

2 Decorrelate

3 Normalize the variance

Örjan Ekeberg Brain Modeling and Machine Learning

	Training Multi-Layered Networks
	Using Smooth Functions
	Error Minimization
	Error Gradient

	Error Back-Propagation
	Things to Be Aware Of

