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Training Multi-Layered Networks

How can we train a multi layer network?

Perceptron Learning
Requires that we know in which direction the weights should
be changed to come nearer the solution.
Does not work!

Delta Rule
Requires that we can measure the error before thresholding,
but this only works for the last layer.
Does not work!
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Training Multi-Layered Networks

Dilemma:

Thresholding destroys information needed for learning

Without thresholding we loose the advantage of multiple
layers

Solution

Use threshold-like but differentiable squashing functions
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Using Smooth Functions

Two commonly used squashing functions ϕ(
∑

)

y

x

ϕ(x) =
1− e−x

1 + e−x

y

x

ϕ(x) = arctan(x)
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Generalization of the Delta Rule:

1 Choose a cost function ε

ε =
1

2
||~t − ~y ||2 =

1

2

∑
k

(tk − yk)2

2 Minimize it using Steepest Decent
Compute the gradient, i.e.

∂ε

∂vji
and

∂ε

∂wkj
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First case: derivative w.r.t. a weight wkj in the second layer

∂ε

∂wkj
=

∂ε

∂yk
· ∂yk

∂wkj

= −(tk − yk) ·
∂ϕ(y in

k )

∂wkj

= −(tk − yk) · ϕ′(y in
k ) ·

∂y in
k

∂wkj

= −(tk − yk) · ϕ′(y in
k ) · hj

= −δkhj

Here we have introduced δk = (tk − yk) · ϕ′(y in
k )
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Second case: derivative w.r.t. a weight vkj in the first layer

∂ε

∂vji
=

∑
k

∂ε

∂yk
· ∂yk

∂vji

= −
∑
k

(tk − yk) · ∂yk

∂vji

= −
∑
k

(tk − yk) · ϕ′(y in
k ) ·

∂y in
k

∂vji

= −
∑
k

δk ·
∂y in

k

∂vji

= −
∑
k

δk · wkj ·
∂hj

∂vji
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We continue. . .

∂ε

∂vji
= −

∑
k

δk · wkj ·
∂hj

∂vji

= −
∑
k

δk · wkj · ϕ′(hin
j ) ·

∂hin
j

∂vji

= −
∑
k

δk · wkj · ϕ′(hin
j ) · xi

= −δjxi

Here we have introduced δj =
∑

k δk · wkj · ϕ′(hin
j )
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Summary

∂ε

∂wkj
= −δkhj where δk = (tk − yk) · ϕ′(y in

k )

∂ε

∂vji
= −δjxi where δj =

∑
k

δk · wkj · ϕ′(hin
j )

Gradient Decent

∆wkj = ηδkhj

∆vji = ηδjxi
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Error Back-Propagation

1 Forward Pass: Compute all hj and yk

hj = ϕ(
∑

i

vjixi ) yk = ϕ(
∑

j

wkjhj)

2 Backward Pass: Compute all δk and δj

δk = (tk − yk) · ϕ′(y in
k ) δj =

∑
k

δk · wkj · ϕ′(hin
j )

3 Weight Updating:

∆wkj = ηδkhj ∆vji = ηδjxi
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Things to Be Aware Of

Problems with BackProp

Does not always converge (gets stuck in local minima)

Slow convergence

Many parameters need to be tuned

Bad scaling behavior for large problems

Biologically unrealistic

Backward propagating signal
Requires known target values
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Things to Be Aware Of

Tips when using BackProp

Use an antisymmetric ϕ(x)

Put the target values ~t inside the domain interval of ϕ

Order or weigh the training examples so the hard examples
dominate

Choose smart initial weights

Introduce momentum in the weight updating

Add random noise to the weights during training

Remove the squashing-function (ϕ(x)) for the output units

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks
Using Smooth Functions
Error Back-Propagation

Things to Be Aware Of

Things to Be Aware Of

Preprocessing of input patterns

1 Subtract the average

2 Decorrelate

3 Normalize the variance
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