

Örjan Ekeberg Brain Modeling and Machine Learning

Training Multi-Layered Networks Using Smooth Functions Error Back-Propagation

Örjan Ekeberg

Training Multi-Layered Networks

Training Multi-Layered Networks Using Smooth Functions Error Back-Propagation

Training Multi-Layered Networks

How can we train a multi layer network?

• Perceptron Learning

Requires that we know in which direction the weights should be changed to come nearer the solution. Does not work!

Brain Modeling and Machine Learning

• Delta Rule

Requires that we can measure the error before thresholding, but this only works for the last layer. Does not work! Dilemma:

- Thresholding destroys information needed for learning
- Without thresholding we loose the advantage of multiple layers

Solution

Use threshold-like but differentiable squashing functions

Using Smooth Functions

Two commonly used squashing functions $\varphi(\sum)$

$$\varphi(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$$
 $\varphi(x) = \arctan(x)$

Generalization of the Delta Rule:

() Choose a cost function ε

$$arepsilon = rac{1}{2} ||ec{t} - ec{y}||^2 = rac{1}{2} \sum_k (t_k - y_k)^2$$

Minimize it using Steepest Decent Compute the gradient, i.e.

$$\frac{\partial \varepsilon}{\partial v_{ji}}$$
 and $\frac{\partial \varepsilon}{\partial w_{kj}}$

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Training Multi Lavered Networks		Training Multi Lavered Networks	
Using Smooth Functions	Error Minimization Error Gradient	Using Smooth Functions	Error Minimization Error Gradient
Error Back-Propagation		Error Back-Propagation	

First case: derivative w.r.t. a weight w_{kj} in the second layer

$$\begin{aligned} \frac{\partial \varepsilon}{\partial w_{kj}} &= \frac{\partial \varepsilon}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_{kj}} \\ &= -(t_k - y_k) \cdot \frac{\partial \varphi(y_k^{\text{in}})}{\partial w_{kj}} \\ &= -(t_k - y_k) \cdot \varphi'(y_k^{\text{in}}) \cdot \frac{\partial y_k^{\text{in}}}{\partial w_k} \\ &= -(t_k - y_k) \cdot \varphi'(y_k^{\text{in}}) \cdot h_j \\ &= -\delta_k h_j \end{aligned}$$

Here we have introduced $\delta_k = (t_k - y_k) \cdot \varphi'(y_k^{\mathrm{in}})$

Second case: derivative w.r.t. a weight v_{kj} in the first layer

Örjan Ekeberg

Using Smooth Functions Error Back-Propagation

$$\begin{aligned} \frac{\partial \varepsilon}{\partial \mathbf{v}_{ji}} &= \sum_{k} \frac{\partial \varepsilon}{\partial \mathbf{y}_{k}} \cdot \frac{\partial \mathbf{y}_{k}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} (t_{k} - \mathbf{y}_{k}) \cdot \frac{\partial \mathbf{y}_{k}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} (t_{k} - \mathbf{y}_{k}) \cdot \varphi'(\mathbf{y}_{k}^{\mathrm{in}}) \cdot \frac{\partial \mathbf{y}_{k}^{\mathrm{in}}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} \delta_{k} \cdot \frac{\partial \mathbf{y}_{k}^{\mathrm{in}}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} \delta_{k} \cdot \mathbf{w}_{kj} \cdot \frac{\partial h_{j}}{\partial \mathbf{v}_{ji}} \end{aligned}$$

Error Minimization Error Gradient

We continue...

$$\begin{aligned} \frac{\partial \varepsilon}{\partial \mathbf{v}_{ji}} &= -\sum_{k} \delta_{k} \cdot \mathbf{w}_{kj} \cdot \frac{\partial h_{j}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} \delta_{k} \cdot \mathbf{w}_{kj} \cdot \varphi'(h_{j}^{\mathrm{in}}) \cdot \frac{\partial h_{j}^{\mathrm{in}}}{\partial \mathbf{v}_{ji}} \\ &= -\sum_{k} \delta_{k} \cdot \mathbf{w}_{kj} \cdot \varphi'(h_{j}^{\mathrm{in}}) \cdot \mathbf{x}_{i} \\ &= -\delta_{j} \mathbf{x}_{i} \end{aligned}$$

Here we have introduced $\delta_j = \sum_k \delta_k \cdot w_{kj} \cdot \varphi'(h_j^{\text{in}})$

Training Multi-Layered Networks Using Smooth Functions Error Back-Propagation Training Multi-Layered Networks Using Smooth Functions Error Gradient

Brain Modeling and Machine Learning

Summary

$$\begin{aligned} \frac{\partial \varepsilon}{\partial w_{kj}} &= -\delta_k h_j \qquad \text{where } \delta_k &= (t_k - y_k) \cdot \varphi'(y_k^{\text{in}}) \\ \frac{\partial \varepsilon}{\partial v_{ji}} &= -\delta_j x_i \qquad \text{where } \delta_j &= \sum_k \delta_k \cdot w_{kj} \cdot \varphi'(h_j^{\text{in}}) \end{aligned}$$

Gradient Decent

$$\Delta w_{kj} = \eta \delta_k h_j$$

$$\Delta v_{ji} = \eta \delta_j x_i$$

Örjan Ekeberg Brain Modeling and Machine Learning

g Multi-Layered Networks Using Smooth Functions Error Back-Propagation

Error Back-Propagation

(1) Forward Pass: Compute all h_i and y_k

$$h_j = \varphi(\sum_i v_{ji}x_i)$$
 $y_k = \varphi(\sum_j w_{kj}h_j)$

2 Backward Pass: Compute all δ_k and δ_j

$$\delta_k = (t_k - y_k) \cdot \varphi'(y_k^{\text{in}}) \qquad \delta_j = \sum_k \delta_k \cdot w_{kj} \cdot \varphi'(h_j^{\text{in}})$$

Weight Updating:

$$\Delta w_{kj} = \eta \delta_k h_j \qquad \Delta v_{ji} = \eta \delta_j x_i$$

Training Multi-Layered Networks Using Smooth Functions Error Back-Propagation

h Functions Things to Be Aware Of

Things to Be Aware Of

Things to Be Aware Of

Things to Be Aware Of

Problems with BackProp

- Does not always converge (gets stuck in local minima)
- Slow convergence
- Many parameters need to be tuned
- Bad scaling behavior for large problems
- Biologically unrealistic
 - Backward propagating signal
 - Requires known target values

Tips when using BackProp

- Use an antisymmetric $\varphi(x)$
- Put the target values \vec{t} inside the domain interval of φ
- Order or weigh the training examples so the hard examples dominate
- Choose smart initial weights
- Introduce momentum in the weight updating
- Add random noise to the weights during training
- Remove the squashing-function $(\varphi(x))$ for the output units

Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning

raining Multi-Layered Networks Using Smooth Functions Error Back-Propagation

ooth Functions Things to Be Aware Of ck-Propagation

Things to Be Aware Of

Preprocessing of input patterns

- Subtract the average
- 2 Decorrelate
- **③** Normalize the variance

