

• Mathematical Formulation

Support Vector Machines

"Ordinary" low-dimensional data can be "scattered" into a high-dimensional space.

Two problems emerge

- ② Extensive computations

Örjan Ekeberg

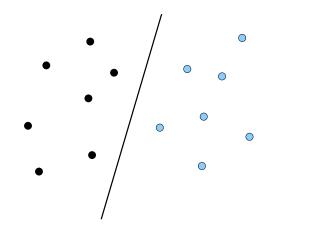
Brain Modeling and Machine Learning

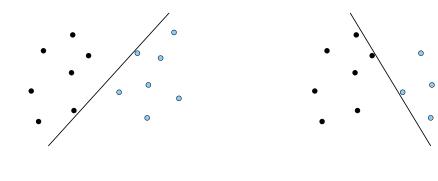
Margins

• Mathematical Formulation

3 Support Vector Machines

Linear Separation





Many acceptable solutions \rightarrow bad generalization

• Structural Risk

Örjan Ekeberg	Brain Modeling and Machine Learning

0

0

C

Revisiting Linear Separation Structural Risk Minimization

Örjan Ekeberg

tion Margins Mathematical Formula

Brain Modeling and Machine Learning

Revisiting Linear Separation High Dimensional Spaces

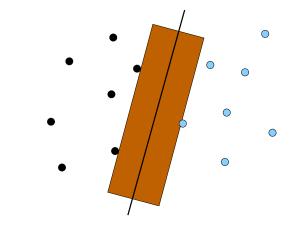
2 Structural Risk Minimization

- Margins
- Mathematical Formulation

Support Vector Machines

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines	Margins Mathematical Formulation

Hyperplane with margins



Less arbitrariness \rightarrow better generalization

• Separating Hyperplane

$$\vec{w}^T \vec{x} + b = 0$$

• Hyperplane with a margin

$$ec{w}^T ec{x} + b \ge 1 \qquad ext{when } t = 1$$

 $ec{w}^T ec{x} + b \le -1 \qquad ext{when } t = -1$

Combined

$$t(\vec{w}^T\vec{x}+b)\geq 1$$

How wide is the margin?

() Select two points, \vec{p} and \vec{q} , on the two margins:

Support Vector Machi

$$\vec{w}^T \vec{p} + b = 1$$
 $\vec{w}^T \vec{q} + b = -1$

Margins

• Wide margins restrict the possible weights to choose from

Minimization of the structural risk \equiv maximization of the margin

Out of all hyperplanes which solve the problem the one with widest margin will generalize best

Structural Risk Minimization

• Less risk to choose bad weights by accident

• Reduced risk for bad generalization

2 Distance between \vec{p} and \vec{q} along \vec{w} :

$$d=ec{w}^{\,\mathcal{T}}(ec{
ho}-ec{q})rac{1}{||ec{w}||}$$

Simplify:

$$d = \frac{\vec{w}^{T}\vec{p} - \vec{w}^{T}\vec{q}}{||\vec{w}||} = \frac{(1-b) - (-1-b)}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$

Maximal margin corresponds to minimal length of the weight vector

Best Separating Hyperplane		
Minimize		
	$\vec{w}^T \vec{w}$	
Constraints		
	$t_i(\vec{w}^T\vec{x}_i+b)\geq 1$	$\forall i$

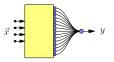
Support Vector Machines

1 Revisiting Linear Separation • High Dimensional Spaces

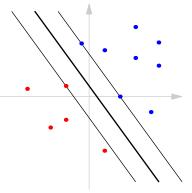
- 2 Structural Risk Minimization Margins

 - Mathematical Formulation

Support Vector Machines



- Transform the input to a suitable high-dimensional space
- Choose the separation that has maximal margins



Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning

Revisiting Linear Separation Structural Risk Minimization Support Vector Machines

Support Vector Machines

- Advantages
 - Very good generalization
 - Works well even with few training samples
 - Fast classification
- Disadvantages
 - Non-local weight calculation
 - Hard to implement efficiently