Kernel Methods	 Kernels Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task
	 2 Support Vector Machines Classification with Minimal Risk Slack Variables

• Function Approximation

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Kernels	Bypassing High-Dimensional Computations	Kernels Support Vector Machines	Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task
Support Vactor Machines			
Support Vector Machines	Re-Formulation of the Minimization Task		

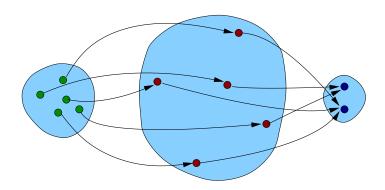
1 Kernels

- Bypassing High-Dimensional Computations
- Re-Formulation of the Minimization Task

2 Support Vector Machines

- Classification with Minimal Risk
- Slack Variables
- Function Approximation

Transform input data non-linearly into a high-dimensional feature space



Idea behind Kernels

Utilize the advantages of a high-dimensional space without actually representing anything high-dimensional

Kernels

Support Vector Machines

- Condition: The only operation done in the high-dimensional space is to compute *scalar products* between pairs of items
- Common in ANN
- Trick: The scalar product is computed using the original (low-dimensional) representation

Points in 2D

Transformation to 4D

$$\vec{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

$$\phi(\vec{x}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2 x_2 \\ \sqrt{3}x_1 x_2^2 \\ x_2^3 \end{bmatrix}$$

$$\phi(\vec{x})^T \cdot \phi(\vec{y}) = x_1^3 y_1^3 + 3x_1^2 y_1^2 x_2 y_2 + 3x_1 y_1 x_2^2 y_2^2 + x_2^3 y_2^3$$

= $(x_1 y_1 + x_2 y_2)^3$
= $(\vec{x}^T \cdot \vec{y})^3$
= $\mathcal{K}(\vec{x}, \vec{y})$

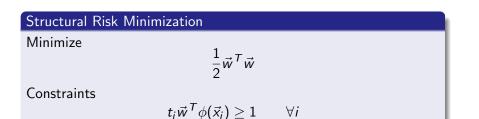
Örjan Ekeberg Brain Modeling and Machine Learning	Örjan Ekeberg Brain Modeling and Machine Learning
Kernels Bypassing High-Dimensional Computations Support Vector Machines Re-Formulation of the Minimization Task	Kernels Bypassing High-Dimensional Computations Support Vector Machines Re-Formulation of the Minimization Task
Common Kernels Polynomials	Structural Risk MinimizationMinimize $\vec{w}^T \vec{w}$ Constraints $t_i (\vec{w}^T \vec{x}_i + b) \ge 1$ $\forall i$
$\mathcal{K}(ec{x},ec{y}) = (ec{x}^{T}ec{y} + 1)^{p}$ Radial Bases	 Include b in the weight vector Non-linear transformation φ of input x
$\mathcal{K}(ec{x},ec{y})=e^{rac{1}{2 ho^2} ec{x}-ec{y} ^2}$	New formulation Minimize $\frac{1}{2}\vec{w}^T\vec{w}$

Constraints

∀i

 $t_i \vec{w}^T \phi(\vec{x}_i) \geq 1$

Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task



Lagranges Multiplier Method

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

Minimized w.r.t. \vec{w} , maximize w.r.t. $\alpha_i \geq 0$

$$\frac{\partial L}{\partial \vec{w}} = 0$$

$$L = \frac{1}{2} \vec{w}^{T} \vec{w} - \sum_{i} \alpha_{i} \left[t_{i} \vec{w}^{T} \phi(\vec{x}_{i}) - 1 \right]$$
$$\frac{\partial L}{\partial \vec{w}} = 0 \implies \vec{w} - \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i}) = 0$$

 $\vec{w} = \sum_{i} \alpha_i t_i \phi(\vec{x}_i)$

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Kernels Vector Machines	Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task	Kernels Support Vector Machines	Bypassing High-Dimensional Computations Re-Formulation of the Minimization Task

Use

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

to eliminate \vec{w}

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

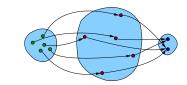
$$L = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) - \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) + \sum_i \alpha_i$$
$$L = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j)$$

The Dual P Maximize		
	$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,i} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$	
Under the c		
	$lpha_i \geq 0 \forall i$	

- \vec{w} has disappeared
- $\phi(\vec{x})$ only appear in scalar product pairs

Bypassing High-Dimensional ComputationsRe-Formulation of the Minimization Task

nels Slack Variables



- Choose a suitable kernel function
- **2** Compute α_i (solve the maximization problem)
- **③** \vec{x}_i corresponding to $\alpha_i \neq 0$ are called support vectors
- Olassify new data points via

$$\sum_{i} \alpha_{i} t_{i} \mathcal{K}(\vec{x}, \vec{x_{i}}) > 0$$

Kernels Support Vector MachinesClassification with Minimal Risk Slack Variables Function ApproximationKernels Support Vector MachinesClassification with Minimal Risk Slack Variables Function Approximation	Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Kernels Slack Variables Slack Variables				
Kernels Slack Variables Slack Variables				
Company Stack Variables	IZ success	Classification with Minimal Risk	Kamala	Classification with Minimal Risk
	Support Vector Machines		Support Vector Machines	Slack Variables

None-Separable Training Samples

Allow for Slack

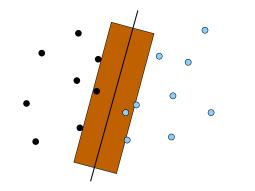
1 Kernels

2 Support Vector Machines

• Function Approximation

Slack Variables

• Classification with Minimal Risk



Re-formulation of the minimization problem

Minimize

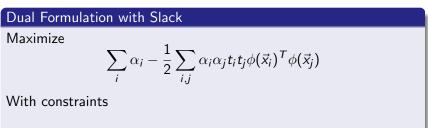
$$\frac{1}{2}\vec{w}^T\vec{w} + C\sum_i\xi_i$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 - \xi_i$$

 ξ_i are called *slack variables*

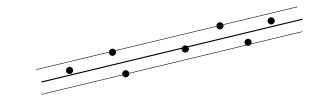
nels Slack Variables



 $0 \le \alpha_i \le C \quad \forall i$

Otherwise, everything remains as before

Support vector methods can also be used for function approximation



Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning