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Transform input data non-linearly into a high-dimensional feature
space
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Idea behind Kernels

Utilize the advantages of a high-dimensional space
without actually representing anything high-dimensional

Condition: The only operation done in the high-dimensional
space is to compute scalar products between pairs of items

Common in ANN

Trick: The scalar product is computed using the original
(low-dimensional) representation
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Example

Points in 2D

~x =

[
x1

x2

]
Transformation to 4D

φ(~x) =


x3

1√
3x2

1 x2√
3x1x

2
2

x3
2



φ(~x)T · φ(~y) = x3
1 y3

1 + 3x2
1 y2

1 x2y2 + 3x1y1x
2
2 y2

2 + x3
2 y3

2

= (x1y1 + x2y2)3

= (~xT · ~y)3

= K(~x , ~y)
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Common Kernels

Polynomials

K(~x , ~y) = (~xT~y + 1)p

Radial Bases

K(~x , ~y) = e
1

2ρ2 ||~x−~y ||2
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Structural Risk Minimization

Minimize
~wT ~w

Constraints
ti (~w

T~xi + b) ≥ 1 ∀i

Include b in the weight vector

Non-linear transformation φ of input ~x

New formulation

Minimize
1

2
~wT ~w

Constraints
ti ~w

Tφ(~xi ) ≥ 1 ∀i
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Structural Risk Minimization

Minimize
1

2
~wT ~w

Constraints
ti ~w

Tφ(~xi ) ≥ 1 ∀i

Lagranges Multiplier Method

L =
1

2
~wT ~w −

∑
i

αi

[
ti ~w

Tφ(~xi )− 1
]

Minimized w.r.t. ~w , maximize w.r.t. αi ≥ 0

∂L

∂~w
= 0
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L =
1

2
~wT ~w −

∑
i

αi

[
ti ~w

Tφ(~xi )− 1
]

∂L

∂~w
= 0 =⇒ ~w −

∑
i

αi tiφ(~xi ) = 0

~w =
∑

i

αi tiφ(~xi )
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Use
~w =

∑
i

αi tiφ(~xi )

to eliminate ~w

L =
1

2
~wT ~w −

∑
i

αi

[
ti ~w

Tφ(~xi )− 1
]

L =
1

2

∑
i ,j

αiαj ti tjφ(~xi )
Tφ(~xj)−

∑
i ,j

αiαj ti tjφ(~xi )
Tφ(~xj) +

∑
i

αi

L =
∑

i

αi −
1

2

∑
i ,j

αiαj ti tjφ(~xi )
Tφ(~xj)
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The Dual Problem

Maximize ∑
i

αi −
1

2

∑
i ,j

αiαj ti tjφ(~xi )
Tφ(~xj)

Under the constraints

αi ≥ 0 ∀i

~w has disappeared

φ(~x) only appear in scalar product pairs
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Örjan Ekeberg Brain Modeling and Machine Learning

Kernels
Support Vector Machines

Classification with Minimal Risk
Slack Variables
Function Approximation

1 Choose a suitable kernel function

2 Compute αi (solve the maximization problem)

3 ~xi corresponding to αi 6= 0 are called support vectors

4 Classify new data points via∑
i

αi tiK(~x , ~xi ) > 0
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None-Separable Training Samples

Allow for Slack
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Re-formulation of the minimization problem

Minimize
1

2
~wT ~w+C

∑
i

ξi

Constraints
ti ~w

Tφ(~xi ) ≥ 1−ξi

ξi are called slack variables
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Dual Formulation with Slack

Maximize ∑
i

αi −
1

2

∑
i ,j

αiαj ti tjφ(~xi )
Tφ(~xj)

With constraints

0 ≤ αi≤ C ∀i

Otherwise, everything remains as before
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Support vector methods can also be used for function
approximation
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