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Concept Learning

Concept Learning

Learning of a boolean function from examples

Categories

“Nice weather”

“Dog”

“Motor vehicle”

“Criminal offence”

Subsets of a superset X
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Terminology

c The concept to learn

c(x)→ True/False, x ∈ X

h Hypothesis, Result of the learning (“guessed c”)

h(x)→ True/False, x ∈ X

H Hypotheses space , All conceivable hypotheses
(before data arrives)

h ∈ H

D Set of available training data

D ⊆ X
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Two kinds of training examples

Positive example:
x : c(x) = True, x ∈ D

Negative example:
x : c(x) = False, x ∈ D
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Example of a concept

”Nice Weather”

Let each ”weather instance” xi be composed of four attributes:

x1 = <Sunny, Warm, Windy, Dry>
x2 = <Cloudy, Warm, Calm, Dry>
x3 = · · ·

Generally: Sky × Temperature × Wind × Humidity
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Assume that the attributes can only take on certain discrete values:

Sky ∈ { Sunny, Cloudy, Rainy }
Temp ∈ { Warm, Cold }
Wind ∈ { Windy, Calm }

Humid ∈ { Humid, Dry }

Number of possible weathers: |X | = 3 · 2 · 2 · 2 = 24
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Typical training samples

x1 = <Sunny, Warm, Windy, Dry> → Nice
x2 = <Sunny, Warm, Windy, Humid> → Nice
x3 = <Rainy, Cold, Windy, Humid> → Bad
x4 = <Sunny, Warm, Calm, Humid> → Nice
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What does the hypotheses space H look like?

X

h

H

x

x

x

x

h

h

h

h

h

h

x
x

x

x

Each hypothesis h corresponds to one subset of X
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How many hypotheses can we choose from?
How many subsets does X have?

|H| = 2|X |

|H| = 224 = 16777216
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Decision Tree

Test the attributes sequentially

Choose attributes to test depending on earlier attribute values

Temp

Sky

Wind

Sunny Cloudy Rainy

Windy Calm Warm Cold

No

NoYesYesNo

The results (classifications) are coded by the leaves
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Temp

Sky

Wind

Sunny Cloudy Rainy

Windy Calm Warm Cold

No

NoYesYesNo

What does the tree encode?

(Sunny ∧ Calm) ∨ (Cloudy ∧Warm)

Works as a disjunction of conjunctions

Normal Form for boolean functions
Arbitrary boolean functions can be represented!
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How can a decision tree be constructed automatically?

1 Choose an attribute to test

2 Branches with a unique class become leaves

3 Other branches are extended recursively

Remaining question: how do we choose attributes?

Greedy approach:

Choose the attribute which tells us most about the answer
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Entropy

Entropy — measure of unpredictability

Entropy =
∑

i

−pi log2 pi

pi probability for outcome i
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Entropy

Example: tossing a coin
phead = 0.5; ptail = 0.5

Entropy =
∑

i

−pi log2 pi =

= −0.5 log2 0.5 +−0.5 log2 0.5 = −0.5 log2 0.5︸ ︷︷ ︸
−1

+− 0.5 log2 0.5︸ ︷︷ ︸
−1

=

= 1

The result of a coin-toss has 1 bit of information
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Example: rolling a dice
p1 = 1

6 ; p2 = 1
6 ; . . . p6 = 1

6

Entropy =
∑

i

−pi log2 pi =

= 6×−1

6
log2

1

6
=

= − log2
1

6
= log2 6 ≈ 2.58

The result of a dice-roll has 2.58 bit of information
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Example: rolling a fake dice
p1 = 0.1; . . . p5 = 0.1; p6 = 0.5

Entropy =
∑

i

−pi log2 pi =

= −5 · 0.1 log2 0.1− 0.5 log2 0.5 =

≈ 2.16

A real dice is more unpredictable (2.58 bit) than a fake (2.16 bit)
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Unpredictability of a dataset

100 examples, 42 positive

− 58

100
log2

58

100
− 42

100
log2

42

100
= 0.981

100 examples, 3 positive

− 97

100
log2

97

100
− 3

100
log2

3

100
= 0.194
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Back to the decision trees

Smart idea:

Ask about the attribute which maximizes the expected reduction of
the entropy.

Information Gain
Assume that we ask about attribute A for a dataset S

Gain = Ent(S) Ent(S)︸ ︷︷ ︸
before

−
∑

v∈Values(A)

|Sv |
|S |

∑
v∈Values(A)

|Sv |
|S |︸ ︷︷ ︸

weighted
average

Ent(Sv ) Ent(Sv )︸ ︷︷ ︸
after
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What is the entropy for this dataset?
Ent = −12

25 log2
12
25 −

13
25 log2

13
25 ≈ 0.9988

A = •: 6
12 positive → 1.0

A = ◦: 6
13 positive → 0.9957

Expected: 12
25 · 1.0 + 13

25 · 0.9957 ≈ 0.9977

B = •: 9
11 positive → 0.684

B = ◦: 3
14 positive → 0.750

Expected: 0.721

C = •: 3
6 positive → 1.0

C = ◦: 9
19 positive → 0.9980

Expected: 0.9985

D = •: 3
5 positive → 0.9710

D = ◦: 9
20 positive → 0.9928

Expected: 0.9884

A B C D
• • ◦ ◦ +
◦ • • ◦ +
◦ ◦ ◦ ◦
• ◦ ◦ • +
◦ • ◦ ◦ +
• ◦ • ◦
• • ◦ ◦ +
◦ ◦ ◦ ◦
◦ ◦ • ◦
• • ◦ ◦ +
◦ ◦ ◦ • +
• ◦ ◦ ◦
• • • ◦ +
◦ • ◦ •
◦ ◦ ◦ ◦
• ◦ ◦ ◦
• • ◦ •
◦ • ◦ ◦ +
◦ ◦ • ◦
• ◦ ◦ ◦
◦ • ◦ ◦ +
• ◦ ◦ • +
◦ • • ◦ +
◦ ◦ ◦ ◦
• ◦ ◦ ◦
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Gain(A) = 0.9988− 0.9977 = 0.0011
Gain(B) = 0.9988− 0.7210 = 0.2778
Gain(C ) = 0.9988− 0.9985 = 0.0003
Gain(D) = 0.9988− 0.9884 = 0.0104
Attribute B gives most information

B

Yes No
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B

Yes No

Examples where
B = •

A B C D
• • ◦ ◦ +
◦ • • ◦ +
◦ • ◦ ◦ +
• • ◦ ◦ +
• • ◦ ◦ +
• • • ◦ +
◦ • ◦ •
• • ◦ •
◦ • ◦ ◦ +
◦ • ◦ ◦ +
◦ • • ◦ +

Examples where
B = ◦

A B C D
◦ ◦ ◦ ◦
• ◦ ◦ • +
• ◦ • ◦
◦ ◦ ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ • +
• ◦ ◦ ◦
◦ ◦ ◦ ◦
• ◦ ◦ ◦
◦ ◦ • ◦
• ◦ ◦ ◦
• ◦ ◦ • +
◦ ◦ ◦ ◦
• ◦ ◦ ◦
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D D

B

++_ _

Yes No

NoYesNoYes
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Possible ways of improving the decision trees

Avoid overfitting

Limit the tree’s height
Pruning

Attributes with graded values

Missing attribute values

Variable cost for different attributes
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