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Ensemble Method

Combining hypotheses from several learners
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Terminology

Weak Learner

Learning algorithm capable of always producing hypotheses that
perform better than chance.

Strong Learner

Learning algorithm capable of producing hypotheses that perform
arbitrarily well.

Örjan Ekeberg Brain Modeling and Machine Learning

Ensemble Methods
Boosting Algorithms

Weak and Strong Learners
Useful Weak Learners

A strong learner can always be constructed by combining multiple
instances of any weak learner.

Instead of inventing very good learning algorithms we can use
multiple simple ones
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Revival of simple learning algorithms

Single layer perceptrons

Limited height trees (“Stumping”)

Näıve Bayesian classifiers
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Bagging — Bootstrap Aggregating

Given a set of training examples D

Form new sample sets Di by randomly sampling D

Use any weak classifier to get hypotheses: Di → hi

Create an aggregated classifier h? which delegates to all hi

and returns the majority vote
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Boosting

Evaluate each learner on the training data

Force next learner to concentrate on hard examples

Weighted majority vote, based on performance
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AdaBoost — Adaptive Boosting

Most common variant of boosting

Assign a weight wi to each training example

Use a weak learner which pays more attention to high-weight
examples

Increase wi for examples which are incorrectly classified
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1 Initialize weights wi = 1
N ∀ examples i

2 Repeat until t = T ∨ εt ≥ 0.5
1 Train weak classifier: {D, ~w} → ht

2 Evaluate the performance of ht :

εt ←
∑

i :h(xi ) 6=ti

wi set αt ←
1

2
log

1− εt
εt

3 Update weights:

wi ←
{

wie
−αt for correctly classified points

wie
αt for incorrectly classified points

4 Normalize weights: wi ← wiP
j wj

3 Final classifier: h?(x) ≡ sign
(∑T

t=1 αtht(x)
)
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Adding more learners reduces training error

Risk of overlearning

In practice, this does not happen!

Recent theoretical finding: AdaBoost tends to maximize
margins
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