Competitive Learning

1 Vector Quantization

- Quantization
- Competitive Learning
- Dead Units

2 Supervised Competitive Learning

• Learning Vector Quantization

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Vector Quantization Supervised Competitive Learning	Quantization Competitive Learning Dead Units	Vector Quantization Supervised Competitive Learning	Quantization Competitive Learning Dead Units
 Vector Quantization Quantization Competitive Learning Dead Units Supervised Competitive Learning Learning Vector Quantization 	ng n	 Vector Quantization Limited number of typical data vectors Compression: use the closest typical vector Voronoi-partitioning 	

Quantization Competitive Learning Dead Units

Vector Quantization in Networks

- Winner-take-all
- Only one active output unit Compare: Grandmother-cells
- Possible biological counterpart: Lateral inhibition

Competitive Learning

Basic Principle

Only update the winning unit (prototype vector) to become "even better".

Properties:

- Finds clusters in input data
- "Protects territories"
- Batch-version: $\vec{w} \leftarrow$ average of all \vec{x} where \vec{w} is a winner
- Reminds of Expectation Maximization (EM)

- Quantization
- Competitive Learning
- Dead Units

2 Supervised Competitive Learning

• Learning Vector Quantization

LVQ — Learning Vector Quantization Supervised Competitive Learning — Known classes

 $\Delta \vec{w} = +\eta (\vec{x} - \vec{w})$

$$\Delta \vec{w} = -\eta (\vec{x} - \vec{w})$$

if the winner belongs to the right class

if the winner belongs to the wrong class

Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning