Pattern Association

Cell Assemblies

1 Association

- Hetero Association
- Auto Association
- Cell Assemblies

2 Recurrent Dynamics

- Attractors
- Storing Memories
- Content Adressable Memory
- Providing Input

Örjan Ekeberg Brain Modeling and Machine Learning	Örjan Ekeberg Brain Modeling and Machine Learning		
Association Recurrent Dynamics Hetero Association Cell Assemblies	Association Recurrent Dynamics Hetero Association Cell Assemblies		
1 Association	Association Mapping from one pattern to another pattern		
 Hetero Association Auto Association Cell Assemblies 			
 Recurrent Dynamics Attractors 			
 Storing Memories Content Adressable Memory Providing Input 			
	 Binary patterns (often represented with -1 and 1) Threshold units 		

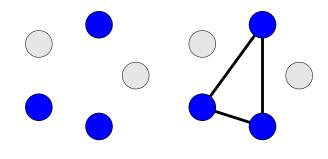
Hetero Association

$$\vec{x}_1 = \begin{bmatrix} 1\\1\\1\\-1\\-1\\-1 \end{bmatrix} \quad \vec{y}_1 = \begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix} \quad \vec{x}_2 = \begin{bmatrix} -1\\-1\\1\\1\\1\\1 \end{bmatrix} \quad \vec{y}_2 = \begin{bmatrix} -1\\-1\\-1\\1\\1 \end{bmatrix}$$

Stored using Hebbs rule: $W = \sum_{p} \vec{y}_{p} \vec{x}_{p}^{T}$

$$W = \begin{bmatrix} 0 & 0 & -2 & 0 & 0 \\ 2 & 2 & 0 & -2 & -2 \\ -2 & -2 & 0 & 2 & 2 \end{bmatrix}$$

- Noisy input may still produce perfect output
- Association in multiple stages is possible
- Patterns are improved at each step


Örjan Ekeberg Brain Modeling and Machine Learning	Örjan Ekeberg Brain Modeling and Machine Learning
Association Recurrent Dynamics Hetero Association Cell Assemblies	Association Recurrent Dynamics Hetero Association Cell Assemblies
Hetero-Association	Neural representation of association chains The same neurons can be used for both input and output
Mapping from one pattern to another pattern	
Mapping from one pattern to another pattern Auto-Association Mapping from one pattern to itself	 Pattern of currently active neurons — Neural State Associations work over time Hetero-association — Replacing the current activity pattern

on Auto Association Cell Assemblies

Hebbs Cell Assembly Hypothesis

Groups of simultaneously active neurons are the neural correlate of "thoughts"

- Auto-association
- Tied together via excitatory connections

1 Association

- Hetero Association
- Auto Association
- Cell Assemblies

2 Recurrent Dynamics

- Attractors
- Storing Memories
- Content Adressable Memory
- Providing Input

Brain Modeling and Machine Learning Örjan Ekeberg Brain Modeling and Machine Learning Örjan Ekeberg Attractors Attractors Association Recurrent Dynamics Recurrent Dynamics What happens over time with a pattern? Three possibilities • Converges to a stable pattern — Fixpoint attractor • Cycles over a set of patterns — Cyclic attractor • Recurrent network • Dynamical system • Never repeats itself — Chaotic attractor Fixpoint Attractors

Model of stable "thoughts"; Cell assemblies

Association Attractors Association Storing Memories Recurrent Dynamics Content Adressable Memory Providing Input

Storing memories — Forming attractors Hebbs rule works surprisingly well

 $\Delta w_{ji} = \eta \vec{x}_j \vec{x}_i$

What can it be used for?

- Cleaning up noisy patterns
- Restoring a pattern from a partial pattern
- Resolving rivalry between multiple patterns
- Bi-directional associtions
- Multi-modal associations

Örjan Ekeberg	Brain Modeling and Machine Learning	I	Örjan Ekeberg	Brain Modeling and Machine Learning
Association Recurrent Dynamics	Attractors Storing Memories Content Adressable Memory Providing Input		Association Recurrent Dynamics	Attractors Storing Memories Content Adressable Memory Providing Input
Different ways of providing input: Input as the starting condition Clamping of nodes with know	n	,	Visible and Hidden UnitsClamping	