

Orjan Ekeberg	Brain Modeling and Machine Learning	Orjan Ekeberg	Brain Modeling and Machine Learning
Boltzmann Machine Stochastic Neurons Physics Analogy Boltzmann Machine Learning		Boltzmann Machine Stochastic Neurons Physics Analogy Boltzmann Machine Learning	
		$x_1 \leftarrow w_1$ $x_2 \leftarrow w_2$	

.w/

Boltzmann Machine

- Stochastic neural network
- Ideas from statistical mechanics

The parameter T controls the level of randomness

y

 $P(\mathrm{on}) = \frac{1}{1 + e^{-\frac{1}{T}\sum}}$

 $\sum_i w_i x_i$

Network activity Consensus

$$C = \sum_{i,j} x_i x_j w_{ji}$$

The net tends to select patterns with high consensus

Stochastic Neurons

Physics Analogy Boltzmann Machine Learning

- $w_{ji} > 0 \rightarrow \text{high consensus when } x_i \text{ and } x_j \text{ are similar}$
- $w_{ji} < 0 \rightarrow$ high consensus when x_i and x_i are different

Comparison with statistical mechanics

- $\bullet \ -C$ corresponds to free energy
- T corresponds to temperature
- Probability of being in a specific state depends on the states energy (consensus) and *T*

Boltzmann distribution: $P(x) = \frac{e^{-\frac{E_x}{kT}}}{7}$

- \bullet Low energy \rightarrow high probability
- \bullet Lowering ${\mathcal T} \to$ concentration to low-energy states
- $\bullet\,$ Slow reduction of $\,{\cal T}\, \to\,$ concentration at the state with lowest possible energy

- Redundant representation
- Each node represents being in a certain place at a certain time

- It is against the rules to be in several places simultaneously
- Only one node should be active per column
- Negative connections to nodes in same column

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Boltzmann Machine Stochastic Neurons Physics Analogy Boltzmann Machine Learning	Simulated Annealing Optimization Example	Boltzmann Machine Stochastic Neurons Physics Analogy Boltzmann Machine Learning	Simulated Annealing Optimization Example
 It is against the rules to visit the same place twice Only one node should be active per row Negative connections to nodes in same row 	When 1 2 3 4 5 A B C D C D C D C D C D C D C D C D C D D C D D D D D D D D D D D D D	 Undesirable to travel long distances Weaker negative connections reflecting distance 	When 1 2 3 4 5 A B C D E

Two kinds of constraints

• Hard constraints (conditions) Strong weights

Physics Analogy

Boltzmann Machine Learni

• Soft constraints (wishes) Weaker weights Another example — Sudoku

- Optimization problem?
- Only hard constraints
- Representation:
 - One unit per possible digit and place $(9 \times 9 \times 9)$
- Negative connections between different digits on the same place
- Negative connections between the same digit within the same field

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Poltzmann Machina		Roltzmann Machina	
Stochastic Neurons		Stochastic Neurons	
Physics Analogy Boltzmann Machine Learning		Physics Analogy Boltzmann Machine Learning	

Learning for Boltzmann Machines

Learning Principle

Adjust the weights so that the internally produced activity distribution resembles the external one

- **(**) Measure pairwise correlation $\rho_{ij}^+ = \langle x_i, x_j \rangle$ with input clamped
- **2** Measure pairwise correlation $\rho_{ii}^- = \langle x_i, x_j \rangle$ without input
- Opdate weights

$$\Delta w_{ij} = \eta (\rho_{ij}^+ - \rho_{ij}^-)$$

Simplification of the model

- Mean-Field approximation
- All stochastic signals are replaced by their mean value
- Graded signals
- Fast convergence

Disadvantage: Can not capture higher order correlations

Simulated Annealing Optimization Example