Introduction

- Markov Models
- Hidden Markov Models

Hidden Markov Models
(2) Known Model

- Observation Probability
- Viterbi Algorithm

Learning

- Baum-Welch AlgorithmIntroduction
- Markov Models
- Hidden Markov ModelsKnown Model
- Observation Probability
- Viterbi Algorithm
- System is in one state at a time
- Discrete time

```
Markov Property
Probability of being in one state depends only on the immediately previous state
```ning
- Baum-Welch Algorithm
- State transitions
- Every state transition has a constant probability

\section*{Transition Matrix}
\(a_{i, j}\) - probability of being in state \(j\) when you were in state \(i\) in the preceding step

The transition matrix can be used for "prediction"
- If we know the probability distribution at time \(t: \pi_{s}\)
- Distribution at time \(t+1\) is then \(A^{\top} \vec{\pi}\)
- Distribution at time \(t+n\) is then \(\left(A^{T}\right)^{n} \vec{\pi}\)
Halloween Example:
Our local witch
(1) Cooking potion (C)
(2) Practising spells \((S)\)
(3) Out flying \((F) \quad C: 1 \quad S: 2 \quad F: 3\)

\[
A=\left[\begin{array}{lll}
0.1 & 0.5 & 0.4 \\
0.3 & 0.2 & 0.5 \\
0.6 & 0.2 & 0.2
\end{array}\right]
\]

Hidden Markov Model
Markov model where the states are not (directly) observable
Witch example
- We don't actually know what the witch is doing
- We can only observe if smoke is coming from the chimney
- We must infer what she is probably doing

\section*{Emission Matrix}
\(b_{i, k}\) - probability of observing \(k\) when you are in state \(i\)
Witch example

States: \(C: 1 \quad S: 2 \quad F: 3\)

Observations : NoSmoke : \(1 \quad\) Smoke : 2
\(A=\left[\begin{array}{lll}0.1 & 0.5 & 0.4 \\ 0.3 & 0.2 & 0.5 \\ 0.6 & 0.2 & 0.2\end{array}\right] \quad B=\left[\begin{array}{ll}0.1 & 0.9 \\ 0.5 & 0.5 \\ 1.0 & 0.0\end{array}\right] \quad \pi=\left[\begin{array}{l}0.4 \\ 0.3 \\ 0.3\end{array}\right]\)

\section*{Hidden Markov Model algorithms}
- What it the probability for a specific observation sequence?
- Which is the most likely state sequence behind an observation sequence?
- How to measure the values for \(A\) and \(B\) from many observation sequences?Introduction
- Markov Models
- Hidden Markov Models
(2) Known Mode
- Observation Probability
- Viterbi Algorithm
(3) Learning
- Baum-Welch Algorithm

Forward Algorithm
Key idea: Compute \(\alpha_{s, t} \equiv\) Probability of being in state \(s\) at time \(t\) and making the observations \(o_{1}, o_{2}, \ldots, o_{t}\)
- Base case
\[
\alpha_{s, 1}=\pi_{s} b_{s, o_{1}}
\]
- Recursive computation
\[
\alpha_{s, t}=b_{s, o_{t}} \sum_{i} a_{i, s} \alpha_{i, t-1}
\]
- Termination
\[
P\left(o_{1}, o_{2}, \ldots, o_{T} \mid A, B\right)=\sum_{i} \alpha_{i, T}
\]

\section*{Backward Algorithm}

Alternative algorithm calculating from the end
\(\beta_{s, t}\) - Probability of being in state \(s\) at time \(t\) and then making
the observations \(o_{t+1}, o_{t+2}, \ldots, o_{T}\)

C

S
S

F

Which is the most likely state sequence behind a specific observation sequence?

\section*{Viterbi Algorithm}

Solution via Dynamic Programming
- It is sufficient to keep track of the best path to every state for each time
- Key idea: compute \(v_{s, t} \equiv\) probability of most likely path which ends in state \(s\) at time \(t\)
\(v_{\mathrm{s}, t} \equiv\) probability of most likely path which ends in state \(s\) at time \(t\)
- Initialization
\[
v_{s, 1}=\pi_{s} b_{s, o_{1}}
\]
- Forward pass
\[
\begin{aligned}
v_{s, t} & =\max _{i} v_{i, t-1} a_{i, s} b_{s, o_{t}} \\
p_{s, t} & =\underset{i}{\arg \max } v_{i, t-1} a_{i, s}
\end{aligned}
\]
- Unwinding the most likely state sequence
\[
\begin{gathered}
q_{T}=\underset{i}{\arg \max v_{i, T}} \\
q_{t}=p_{q_{t+1}, t+1}
\end{gathered}
\]introduction
- Markov Models
- Hidden Markov Models
(2) Known Model
- Observation Probability
- Viterbi Algorithm

Learning
- Baum-Welch Algorithm

\section*{Known Model
Learning}

\section*{Baum-Welch Algorithm}

Expectation-Maximization (EM) method to adjust model parameters \(\left(a_{i, j}, b_{i, k}\right)\) from a large number of observation sequences \(\left(o_{1}, o_{2}, \ldots, o_{T}\right)\)
- Expectation

Use variant of forward and backward algorithms to estimate probable transitions and emissions
- Maximization

Use these transitions and emissions to update the model
- \(\alpha_{s, t}\) - based on observations up to time \(t\)
- \(\beta_{s, t}\) - based on observations from time \(t\)

Key idea: compute \(\gamma_{i, j, t} \equiv\) Probability that we, at time \(t\), made the transition from \(i\) to \(j\)
\[
\gamma_{i, j, t}=\frac{\alpha_{i, t} a_{i, j} b_{i, o_{k}} \beta_{j, t+1}}{\sum_{i} \sum_{j} \alpha_{i, t} a_{i, j} b_{i, o_{k}} \beta_{j, t+1}}
\]

Update model parameters
\[
\begin{gathered}
a_{i, j}=\frac{\sum_{t} \gamma_{i, j, t}}{\sum_{t} \sum_{m} \gamma_{i, m, t}} \\
b_{i, k}=\frac{\sum_{t, o_{t}=k} \sum_{m} \gamma_{i, m, t}}{\sum_{t} \sum_{m} \gamma_{i, m, t}}
\end{gathered}
\]```

