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System is in one state at a time

Discrete time

Markov Property

Probability of being in one state depends only on the immediately
previous state
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State transitions

Every state transition has a constant probability

Transition Matrix

ai ,j — probability of being in state j when you were in state i in
the preceding step
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Halloween Example:
Our local witch

1 Cooking potion (C )

2 Practising spells (S)

3 Out flying (F )
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C : 1 S : 2 F : 3

A =

 0.1 0.5 0.4
0.3 0.2 0.5
0.6 0.2 0.2
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The transition matrix can be used for “prediction”

If we know the probability distribution at time t: πs

Distribution at time t + 1 is then AT~π

Distribution at time t + n is then (AT )n~π
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Hidden Markov Model

Markov model where the states are not (directly) observable

Witch example

We don’t actually know what the witch is doing

We can only observe if smoke is coming from the chimney

We must infer what she is probably doing
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Emission Matrix

bi ,k — probability of observing k when you are in state i

Witch example

States : C : 1 S : 2 F : 3

Observations : NoSmoke : 1 Smoke : 2

A =

 0.1 0.5 0.4
0.3 0.2 0.5
0.6 0.2 0.2

 B =

 0.1 0.9
0.5 0.5
1.0 0.0

 π =

 0.4
0.3
0.3
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Hidden Markov Model algorithms

What it the probability for a specific observation sequence?

Which is the most likely state sequence behind an observation
sequence?

How to measure the values for A and B from many
observation sequences?
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What is the probability for a specific observation sequence,
o1, o2, . . . , oT ?

Forward Algorithm

Efficient algorithm to calculate P(o1, o2, . . . , oT |A,B)

Combining probabilities

x and y must happen: P = P(x) · P(y)

x or y can happen: P = P(x) + P(y)
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Forward Algorithm
Key idea: Compute αs,t ≡ Probability of being in state s at time t
and making the observations o1, o2, . . . , ot

Base case
αs,1 = πsbs,o1

Recursive computation

αs,t = bs,ot

∑
i

ai ,sαi ,t−1

Termination

P(o1, o2, . . . , oT |A,B) =
∑

i

αi ,T
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Smoke Smoke NoSmoke
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Backward Algorithm

Alternative algorithm calculating from the end

βs,t — Probability of being in state s at time t and then making
the observations ot+1, ot+2, . . . , oT
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Which is the most likely state sequence behind a specific
observation sequence?

Viterbi Algorithm

Solution via Dynamic Programming

It is sufficient to keep track of the best path to every state for
each time

Key idea: compute vs,t ≡ probability of most likely path
which ends in state s at time t
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vs,t ≡ probability of most likely path which ends in state s at time t

Initialization
vs,1 = πsbs,o1

Forward pass
vs,t = max

i
vi ,t−1ai ,sbs,ot

ps,t = arg max
i

vi ,t−1ai ,s

Unwinding the most likely state sequence

qT = arg max
i

vi ,T

qt = pqt+1,t+1
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Baum-Welch Algorithm

Expectation-Maximization (EM) method to adjust model
parameters (ai ,j , bi ,k) from a large number of observation
sequences (o1, o2, . . . , oT )

Expectation
Use variant of forward and backward algorithms to estimate
probable transitions and emissions

Maximization
Use these transitions and emissions to update the model
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αs,t — based on observations up to time t

βs,t — based on observations from time t

Key idea: compute γi ,j ,t ≡ Probability that we, at time t, made
the transition from i to j

γi ,j ,t =
αi ,tai ,jbi ,ok

βj ,t+1∑
i

∑
j αi ,tai ,jbi ,ok

βj ,t+1

Update model parameters

ai ,j =

∑
t γi ,j ,t∑

t

∑
m γi ,m,t

bi ,k =

∑
t,ot=k

∑
m γi ,m,t∑

t

∑
m γi ,m,t
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