## Reinforcement Learning

## 1 Defining the Problem

- Framework
- Role of Reward
- Simplifying Assumptions
- Central Concepts

| Örjan Ekeberg                                                                                                                                  | Brain Modeling and Machine Learning                                        | Örjan Ekeberg Brain Modeling and Machine Learning                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defining the Problem                                                                                                                           | Framework<br>Role of Reward<br>Simplifying Assumptions<br>Central Concepts | Defining the Problem<br>Central Concepts                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>Defining the Problem</li> <li>Framework</li> <li>Role of Reward</li> <li>Simplifying Assumptions</li> <li>Central Concepts</li> </ol> |                                                                            | <ul> <li>Reinforcement Learning</li> <li>Learning of a behavior without<br/>explicit information about correct actions</li> <li>A reward gives information about success</li> <li>The reward does not necessarily arrive <i>when</i> you do something<br/>good</li> <li>Temporal credit assignment</li> <li>The reward does not say <i>what</i> was good</li> <li>Structural credit assignment</li> </ul> |

Role of Reward Simplifying Assumption Central Concepts

Framework

Model of the learning situation

- An agent interacts with its environment
- The agent makes actions
- Actions affect the environments state
- The agent can observe the environments state
- The agent receives reward from the environment



## Task for the Agent

Find a behavior which maximizes the expected total revard.

How long future should we consider?

• Finite Horizon



• Infinite Horizon



Requires discount of future reward (0 <  $\gamma$  < 1)

```
Örjan Ekeberg Brain Modeling and Machine Learning
```

Role of Reward Simplifying Assumptions

| rjan | Ekeberg | Brain | Modeling | and | Machine | Learning |
|------|---------|-------|----------|-----|---------|----------|
| J    |         |       |          |     |         |          |

| Defining the Problem | Framework<br><b>Role of Reward</b><br>Simplifying Assumptions<br>Central Concepts | Defining the |
|----------------------|-----------------------------------------------------------------------------------|--------------|
| Reward Function      |                                                                                   |              |

The Reward function controls which task should be solved

- Game (Chess, Backgammon) Reward only at the end: +1 when winning, -1 when loosing
- Avoiding mistakes (cycling, balancing, ...) Reward -1 at the end (when failing)
- Find a short/fast/cheap path to a goal Reward -1 at each step

Simplifying Assumptions

- Discrete time
- Finite number of actions *a<sub>i</sub>*

 $a_i \in a_1, a_2, a_3, \ldots, a_n$ 

• Finite number of states *s<sub>i</sub>* 

 $s_i \in s_1, s_2, s_3, \ldots, s_m$ 

- Environment is a stationary *Markov Decision Process* Reward and next state depends only on *s*, *a* and chance
- Deterministic or non-deterministic environment

Role of Reward Simplifying Assumptic Central Concepts

## The Agents Internal Representation

Policy

The action chosen by the agent for each state

 $\pi(s) \mapsto a$ 

• Value Function

Expected total future reward from  ${\it s}$  when following policy  $\pi$ 

$$V^{\pi}(s) \mapsto \Re$$

- Each state is represented by a position in a grid
- The agent acts by moving to other positions



Reward: -1 at each step until a goal state (*G*) is reached

Trivial labyrinth



The values of a state depends on the current policy.



*V* with an optimal policy



random policy

Örjan Ekeberg Brain Modeling and Machine Learning