Temporal Difference Learning

2 Improvements

- Need for Exploration
- Eligibility Trace

	Brain Modeling and Machine Learning	Orjan Ekeberg
Temp	General Principles Q-Learning Sarsa-Learning	Temporal Difference Improvements
Town aval Difference		

nporal Difference Improvements General Principles Q-Learning

Brain Modeling and Machine Learning

Örjan Ekeberg

Temporal Difference

Idéa behind Temporal Difference:

Use that there are two estimates of the value of a state: before and after

• Estimate before the action

$$V^{\pi}(s_t)$$

• Estimate after the action

$$r_{t+1} + \gamma \cdot V^{\pi}(s_{t+1})$$

Örjan Ekeberg Brain Modeling and Machine Learning

1 Temporal Difference

Q-Learning Sarsa-Learning

• General Principles

• Need for Exploration

• Eligibility Trace

Temporal Difference Improvements

Important observation:

The second estimate is better!

Update the value estimate using the difference

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \eta \Delta$$

$$\Delta = [r_{t+1} + \gamma \cdot V^{\pi}(s_{t+1})] - V^{\pi}(s_t)$$

 Δ serves as a measure of the surprise / disappointment Learns *considerably faster* that the Monte-Carlo method

Örjan Ekeberg

Temporal Difference

Improvements

Q-learning

Problem:

An estimate of V is not sufficient for computing π since the agent does not have δ and r!

Trick: Estimate Q(s, a) instead of V(s)

Q(s, a): Expected total reward when doing a from s.

Temporal Difference

Improvements

$$\pi(s) = \operatorname*{arg\,max}_{a} Q(s, a)$$

 $V^{\star}(s) = \operatorname*{max}_{a} Q^{\star}(s, a)$

Örjan Ekeberg Brain Modeling and Machine Learning

Sarsa-Learning

Q-Learning

Brain Modeling and Machine Learning

How can we learn Q?

The Q-function can also be learned using Temporal-Difference

$$Q(s, a) \leftarrow Q(s, a) + \eta \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

s' is the next state.

Off-policy learning

 $Q\mbox{-learning}$ finds the values for an optimal policy without any need to follow that policy

SARSA-learning

Almost the same as Q-learning, but one uses the current policy to select a':

$$Q(s, a) \leftarrow Q(s, a) + \eta \left[r + \gamma Q(s', a') - Q(s, a) \right]$$

The name comes from the experience-tuples structure:

 $\langle s, a, r, s', a' \rangle$

On-policy learning

SARSA finds the value of the policy used

Temporal Difference

- General Principles
- Q-Learning
- Sarsa-Learning

2 Improvements

- Need for Exploration
- Eligibility Trace

What do we do when...

- The environment is not fully observable
- There are way too many states
- The states are not discrete
- The agent is acting in continuous time

Örjan Ekeberg	Brain Modeling and Machine Learning	Örjan Ekeberg	Brain Modeling and Machine Learning
Temporal Difference Improvements	Need for Exploration Eligibility Trace	Temporal Difference Improvements	Need for Exploration Eligibility Trace

The Exploration-Exploitation dilemma

If an agent strictly follows a greedy policy based on the current estimate of Q, learning is not guaranteed to converge to Q^*

Simple solution:

Use a policy which has a certain probability of "making mistakes"

• ϵ -greedy

Sometimes (with probability ϵ) make a random action instead of the one that seems best (greedy)

• Softmax

Assign a probability to choose each action depending on how good they seem

Accelerated learning

Eligibility Trace

Idéa: TD updates can be used to improve not only the last state's value, but also states we have visited earlier.

$$\forall s, a: Q(s, a) \leftarrow Q(s, a) + \eta \left[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right] \cdot e$$

e is a remaining trace (eligibility trace) encoding how long ago we were in s doing a.

Often denoted $TD(\lambda)$ where λ is the time constant of the trace e