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Genetic Algorithms

Parallel optimization inspired by biological evolution

Populations of Hypotheses

Selection Process

Local Variation
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Population of Individuals

Selection of the best individuals

Variation creates new individuals

New Generations created iteratively

Örjan Ekeberg Brain Modeling and Machine Learning



Foundations
Algorithm Components
Numerical Optimization

Genetic Programming

Coding of Hypotheses
Fitness Functions
Selection
Variation

1 Foundations

2 Algorithm Components
Coding of Hypotheses
Fitness Functions
Selection
Variation

3 Numerical Optimization

4 Genetic Programming
Example
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How are different hypotheses stored?

Chromosomes — Binary Strings

0 0 0 0 01 1 1 1 1 1

4Property 1 Property 2 Property 3

Genotype
The actual representation (the chromosome)

Fenotype
Properties of the individual (interpretation)
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Example: Optimal choice of edges in a graph

The edges are encoded as a bit string
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Do we have to use bit strings?

Variants:

Other integers than only 0/1

Real numbers

Variable length

Tree structures
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Fitness Function

Measure of how good the hypothesis is

f : chromosome 7→ <

Example:

Total path length in a graph

Error in a function approximation

Performance of a simulated robot

Number of games won

Evaluating the fitness functions is normally the most time
consuming part of a genetic algorithm
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Selection

Basic idea: Preserve individuals with a high fitness

Roulette selection
Probability of survival proportional to f

Ranking selection
Selection based on order instead of the actual fitness value

Tournament selection
Random pairs are formed and the one with highest fitness
survives

Elitism
The best individuals in a generation are guaranteed to survive
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Variation

Mutations
Small random modifications

Crossovers
Mixing of individuals content
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Mutations

Make random changes to the contents of the chromosome

Choice of coding makes a big difference
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Crossovers

Select two individuals with high fitness

Exchange parts of the chromosome with each other

One-point crossover
Multi-point crossover
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Application on ordinary optimization problems

Assume that we are looking for max f (x , y)

Encoding: chromosome consisting of two real numbers

Each individual corresponds to a point in the plane

Mutations
Redistribution parallel to the x and y axis

Crossovers
New points with x from one parent and y from the other
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Example: Optimized code generation from a compiler

ACOVEA — Analysis of Compiler Options via Evolutionary
Algorithms

Software for finding the optimal compiler options for a given C
program
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Genetic Programming

The use of GA to automatically create programs

How are programs represented?

How can one measure fitness?

How are mutations done?

How are crossovers done?
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Representation of Programs

Ordinary programming languages are not suitable

Tree with operators

List of instructions
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Example

Function Approximation

Representation of the program

+

17

* abs

x x

Mutations

Crossovers
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Goal Function
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Solution found by the algorithm
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Bloating

Accumulation of
unnecessary parts in
chromosomes with
variable length
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