Neurophysiology

Flashback Course Summary

• Hodkin-Huxley Models

- Membrane potential
- Ion currents (Na⁺, K⁺)
- Action potentials (spikes)
- Synaptic Interaction
 - Transmittor substances
 - Excitation / inhibition
- Compartment Models

Örjan Ekeberg Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning

Abstract Neurons

- Integrate-and-fire models
- Leaky integrators
- Threshold logic units

Feed-forward Networks

- Single Layer Networks
- Linear Separation
- Error driven learning
 - Perceptron learningError minimization

x_1 $v_{1,2}$ w_1 $v_{2,2}$ w_2 y x_2 $v_{3,1}$ w_3 w_3

- Multi Layer Networks
 - General Classifier
 - Function Approximator
- Back-propagation Learning
 - Differentiable threshold functions
 - Convergence properties

Radial-Basis Functions

• Better function approximator

Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning

Overfitting

Support-Vector Machines

Örjan Ekeberg

- Reduced ability to generalize
- Too powerful learner
- Cures
 - Early stopping
 - Pruning
 - Regularization

- Linear separation in high-dimensional space
- Maximization of margins
- Optimal generalization
- Kernels for efficient computation

- Hypotheses space
- Relations between hypotheses

Örjan Ekeberg

- \bullet Weak learners \rightarrow strong learner
- Multiple learners
- Different training sample sets
- Weighted voting
- AdaBoost

Boosting

Brain Modeling and Machine Learning

Information Gain

Decision Trees

Örjan Ekeberg Brain Modeling and Machine Learning

Competitive Learning

- Only winning node is updated
- Local specialists
- Cluster detection
- Quantization of high-dimensional data

- Self-organizing feature maps
- One or two dimensional map

- Reduction of dimensionality
- Subspace with maximal variance
- Linear combinations

rjan Ekeberg	Brain Modeling and Machine Learning	

Örjan Ekeberg Brain Modeling and Machine Learning

Attractor Models

- Hopfield networks
 - Fixpoint attractors
 - Energy minimization
- Boltzmann machines
 - Stochastic neurons
 - Constrained optimization

Time Sequences

- History unfolding
- Back-propagation through time

TE.

- Hidden Markov models
- Viterbi algorithm
 - Find most likely hidden state sequence
- Baum-Welch algorithm
 - Find model parameters from examples

- Delayed reward
- Temporal credit assignment
- Value function
- Policy
- Temporal difference techniques
- *Q*-learning
- Sarsa-learning

Brain Modeling and Machine Learning

Örjan Ekeberg Brain Modeling and Machine Learning

Genetic Algorithms

- Optimization
- Fitness function
- Parallel stochastic gradient following
- Crossover Sharing partial solutions
- Coding
- Genetic programming

Methods we have not talked about

Örjan Ekeberg

- Bayesian classification
- Bayesian networks
- Learning theory
- Rule based learning