
Machine Learning CMPU 395

Assignment 5: Hopfield Networks

1 Tasks

Your task is to use a set of utility functions performing the basic operations of
a Hopfield network to study the networks ability to store and recall patterns.
You will use three datasets: one small set of short patterns, one set of figurative
patterns (binary images), and collections of random patterns.

For the highest grade you will have to measure how the performance degrades
when the network is overloaded by storing too many patterns.

2 Background

A neural network is called recurrent if it contains connections allowing output
signals to enter again as input signals. They are in some sense more general
than feedforward networks: a feedforward network can be seen as a special case
of a recurrent network where the weights of all non-forward connections are set
to zero.

One of the most important applications for recurrent networks is associa-
tive memory, storing information as dynamically stable configurations. Given
a noisy or partial pattern, the network can recall the original version it has
been trained on (auto-associative memory) or another learned pattern (hetero-
associative memory).

The most well-known recurrent network is the Hopfield network, which is
a fully connected auto-associative network with two-state neurons and asyn-
chronous updating and a Hebbian learning rule. One reason that the Hopfield
network has been so well studied is that it is possible to analyze it using meth-
ods from statistical mechanics, enabling exact calculation of its storage capacity,
convergence properties and stability.

2.1 Hebbian Learning

The basic idea suggested by Donald Hebb is briefly: Assume that we have a
set of neurons which are connected to each other through synapses. When the
cells are stimulated with some pattern, simultaneous activity causes synapses
between them to grow, strengthening their connections.

This will make it more likely for neurons that are often simultaneously active
to support each other. A partial pattern of activation that fits the learned
pattern will stimulate the remaining neurons of the pattern to become active,
completing it (see figure 1).

If two neurons are seldom or never simultaneously active, the synapses be-
tween them will become inhibitory. This makes the network noise resistant,
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since a neuron not belonging to the currently active pattern will be inhibited
by the active neurons.

This form of learning is called Hebbian learning, and is one of the most used
non-supervised forms of learning in neural networks.

Figure 1: A simple Hebbian fully connected auto-associative network. When
three of the units are activated by an outside stimulus their mutual connections
are strengthened. The next time some of them are activated they will activate
each other.

Mathematically, Hebbian learning can be expressed as the outer product of
a pattern vector with itself. Let each pattern to be stored be a vector ~x where
each element, xi, is either −1 (meaning inactive) or 1 (meaning active). Since
we need to store several patterns we may use an upper index µ to indicate
which pattern we are referring to. Thus, we have a set of patterns ~xµ, where
µ = 1, 2, . . . , P .

To measure the correlated activities we use the outer product ∆W = ~x~xT of
the activity vectors we intend to learn; if the components xi and xj are correlated
wij will become positive, if they are anti-correlated wij will become negative.
Note that W is a symmetric matrix; each pair of units will be connected to each
other with the same strength.

The coefficients for the weight matrix can be written as:

wij =
P∑
µ=1

xµi x
µ
j
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where µ is index within a set of patterns, P is the number of patterns. Alter-
natively, we may use vector notation for the same calculation:

W =
P∑
µ=1

~xµ(~xµ)T

2.2 Memory Recall

To recall a pattern of activation ~x in this network we use the following update
rule:

xi ← sign

∑
j

wijxj


where

sign(x) =
{

1 x > 0
−1 x ≤ 0

Actually, the variant of the Hopfield network, where all states are updated
synchronously, is known as the Little model. In the original Hopfield model
the states are updated one at a time, allowing each to be influenced by other
states that might have changed sign in the previous steps. It can be seen as
an asynchronous parallel system. This has some effects for the convergence
properties (see section 2.3), but is otherwise very similar in behavior to the
synchronous model. The Little model is easier to implement using numpy, so we
will use it for most of this assignment.

2.3 Energy

For networks with a symmetric connection matrix it is possible to define an
energy function or Lyapunov function, a finite-valued function of the state that
always decreases as the states change. Since it has to have a minimum at least
somewhere the dynamics must end up in an attractor1. A simple energy function
with this property is:

E = −
∑
i

∑
j

wijxixj

This can be written in matrix form as

E = ~xTW~x

1In the Little model it can actually end up alternating between two states with the same
energy; in the Hopfield model with asynchronous updates the attractor will always be a single
state.
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3 Utility Functions

Most of the operations of the Hopfield network can be seen as vector-matrix
operations which are straightforward to express using functions from numpy.
Note that all the functions listed here are available in the file utils.py.

3.1 Test Patterns

3.1.1 Small Patterns

We will need a few small test patterns as numpy arrays containing −1 and 1 as
elements:

x1 = numpy . array ([−1 , −1, 1 , −1, 1 , −1, −1, 1 ] )
x2 = numpy . array ([−1 , −1, −1, −1, −1, 1 , −1, −1])
x3 = numpy . array ([−1 , 1 , 1 , −1, −1, 1 , −1, 1 ] )

3.1.2 Figurative Patterns

The file figs.py defines nine patterns (p1, p2, . . . , p9). Each pattern is 1024
elements long, but is actually a 32 × 32 binary image. You can look at these
patterns by reshaping them into a 32 by 32 matrix:

pylab . matshow ( f i g s . p1 . reshape ( (32 , 3 2 ) ) )

The file also defines two distorted patterns: p11 and p22. In the first, half
of pattern p1 is replaced with random bits. The second is a mixture of two
patterns (p2 and p3).

3.1.3 Random Patterns

You will need some random patterns. The following function can be used for
generating a random pattern of length n:

def rndPattern (n ) :
” Create a random pattern o f l ength n”
return numpy . s i gn ( numpy . random . randn (n) )

We use numpy.sign which gives −1 for all negative elements and 1 for all
positive.

3.2 Learning

Learning is done using Hebbs rule. We use the function numpy.outer which
calculates the outer product of two vectors. We also remove the self connections,
i.e. we set all the diagonal elements to zero. This is done using numpy.diag
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def l e a r n ( pat t e rn s ) :
”Find the weight matrix f o r a l i s t o f pa t t e rns ”
n = len ( pat t e rns [ 0 ] )
w = numpy . z e r o s ( ( n , n ) )
for p in pat t e rns :

w += numpy . outer (p , p)
return w − numpy . diag (numpy . diag (w) )

3.3 Updating

The function for updating an activity pattern makes use of the numpy func-
tions dot and sign for the matrix-vector multiplication, and the thresholding,
respectively.

def update (w, x ) :
”Apply the p a r a l l e l Hopf i e ld update r u l e ”
return numpy . s i gn (numpy . dot (w, x ) )

You may not want to update all elements in parallel. The following function
selects a random element and updates only that. Note that the array passed as
parameter x is updated in place!

def updateOne (w, x ) :
”Update one element in x”
i = numpy . random . rand int ( l en ( x ) )
x [ i ] = numpy . s i gn (numpy . dot (w[ i , : ] , x ) )

3.4 Energy

Use the following function to get the energy for an activity pattern:

def energy (w, x ) :
”Return the energy o f s t a t e x , us ing weight matrix w”
return −numpy . dot (x , numpy . dot (w, x ) )

3.5 Comparing Patterns

You may have use for a function which compares two patterns.

def samePattern (x , y ) :
”Check i f pa t t e rns x and y are equal ”
return numpy . a l l ( x == y )
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3.6 Disturbing Patterns

You will have use for a function which randomly disturbs a pattern. The fol-
lowing function takes a pattern x and a number n and returns a new pattern
where n randomly chosen elements have been “flipped” (from −1 to 1 or vice
versa). The number n must not be larger than the length of x.

def f l i p p e r (x , n ) :
” F l ip the va lue s o f n e lements in pattern x”
f l i p = numpy . array ( [−1]∗n + [ 1 ] ∗ ( l en ( x)−n ) )
numpy . random . s h u f f l e ( f l i p )
return x ∗ f l i p

4 Experiments

4.1 Small Patterns

• Store the three patterns x1, x2, and x3 in a weight matrix and test if they
are all fixpoints. This simply means that when you apply the update rule
to these patterns you should get the same pattern back.

• Test if you the network will recall the stored patterns if you start with
distorted versions. Use the flipper function to create distorted versions
of the stored patterns.

• Do you have any spurious attractors? How many?

Since this network is rather small you can actually test all possible patterns
starting patterns. Alternatively, you can start at random patterns a large
number of times and keep track of where you end up.

You will note that very few iterations are necessary for convergence. This is
because this network is very small. The number of iterations needed to reach
an attractor scales roughly as log(N) with the network size.

4.2 Restoring Images

Now we will switch to a 1024-neuron network and picture patterns. Load the
file figs.py, which contains nine patterns named p1, p2, . . . , p9, but only store
the first three in a weight matrix.

• Can the network complete a degraded pattern? Try the pattern p11, which
is a degraded version of p1, or p22 which is a mixture of p2 and p3.

• Clearly convergence is practically instantaneous. What happens if we se-
lect units randomly, calculate their new state and then repeat the process
(the original sequential Hopfield dynamics)? Write a Python program us-
ing the updateOne function, showing the image every hundred’th iteration
or so.
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• Create distorted starting patterns by flipping elements in one of these
patterns; iterate a number of times and check whether they are successfully
restored.

How much of the pattern can be destroyed before restoration fails?

• What is the energy at the different attractors?

• What is the energy at the points of the distorted patterns?

• Follow how the energy changes from iteration to iteration when you use
the sequential update rule to approach an attractor.

4.3 Random Connectivity

• Generate a weight matrix by setting the weights to random numbers (use
the normal distribution). What happens when you iteratively update from
an arbitrary starting point?

• Make the weight matrix symmetric
(e.g. by setting w=0.5∗(w+w.transpose())). What happens now?

4.4 Capacity

Add more and more memories to the network to see where the limit is. Start by
including p4 into the set if training patterns and check if moderately distorted
patters can still be recognized. Then continue by including even more (p5, p6,
. . . ) and checking the performance after each addition.

• How many patterns could safely be stored? Was the drop in performance
gradual or abrupt?

• Repeat this with random patterns instead of the pictures and see if you
can store more.

• It has been theoretically shown that the capacity of a Hopfield network is
around 0.138N , but this is only true for random patterns. What was the
corresponding figure when you used non-random patterns (pictures).

4.5 Quantitative Measurements

[This part of the assignment is optional, but required to get the highest
grade.]

Use random patterns of length 100 (or larger) to generate a graph of how
many patterns can be successfully retrieved as a function of how many patterns
are stored.

To avoid unnecessary random fluctuations, generate a sufficiently large set
of random patterns and then use subsets of these patterns throughout the ex-
periment. Construct a weight matrix from 1, 2, . . . , etc. of these patterns and
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in every case check how many of the stored patterns are actually stable. After
each new pattern has been added to the weight matrix, calculate how many
of the earlier patterns remain stable (a single iteration does not cause them to
change).

4.6 Sparse Patterns

[This part of the assignment is optional, but required to get the highest
grade.]

• What happens if you bias the patterns to make them contain more −1’s
than 1’s?

You can test this by defining a modified rndPattern which subtracts a
small number (e.g. 0.5) from the random numbers before calling numpy.sign.

The reduction in capacity because of bias is troublesome, since real data
usually isn’t evenly balanced. Can this possibly explain the bad capacity results
for the picture patterns?

For the final experiment we will use binary (0, 1) patterns, since it makes
sense to view the “ground state” as zero and differing neurons as “active”. If the
average activity ρ = 1

NP

∑P
µ

∑N
i x

µ
i is known, the learning rule can be adjusted

to deal with this imbalance:

wij =
P∑
µ=1

(xµi − ρ)(xµj − ρ)

This produces weights that are still on average zero. When updating, we use
the slightly updated rule

xi ← 0.5 + 0.5 · sign

∑
j

wijxj − θ


where θ is a bias term.

• Try generating sparse patterns with just 10% activity and see how many
can be stored for different values of θ (use a script to check different values
of the bias).

Good luck!
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