
Machine Learning CMPU 395

Assignment 2: Multi-Layer Perceptrons

1 Task

The task is to analyze how a Multi-Layer Perceptron classifies data by studying
the decision boundaries. You will use the mlp class from the book to do the
actual learning and classification. You need to write code for generating suitable
random data and for plotting the data and the resulting decision boundary.

Minimum requirement is that you produce a plot of a non-linear decision
boundary. For highest grade you should explore what happens for different pa-
rameter settings, and in particular you should show a situation where overfitting
has occured.

2 Software Environment

Like in Assignment 1, you will work in Python and use the numpy and pylab
packages. You will also need the MLP implementation from Stephen Marsland’s
textbook, which can be downloaded from the books webpage or from the course
webpage.

Use the examples in the book to understand how to use the mlp package.
You will primarily use the methods mlptrain (for training the net) and mlpfwd
(for classification of data).

3 Data Generation

In order to visualize the decision boundaries graphically we will restrict our-
selves to two-dimensional data, i.e. points in the plane. We can use the function
random.randn to generate random points with a normal distribution. This is
suitable for our task as we can build up more complex distributions by concate-
nating sample sets from multiple normal distributions.

random.randn takes the number of rows and columns as parameters, like
this:

c lassA = numpy . random . randn (50 , 2)

This will create an array with 50 rows and 2 columns, i.e. 50 two-dimensional
datapoints.

random.randn always generates numbers with a mean of zero and a standard
deviation of one. To place the data where you want them and with the deviation
(spread) you want, you need to multiply with an appropriate scaling factor and
to add appropriate offsets. Experiment with this so that you can place your
data where you want them. Make use of the same kind of plotting as you used
earlier:
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pylab . p l o t ( c lassA [ : , 0 ] , c lassA [ : , 1 ] , ’ . ’ )
pylab . show ( )

The ’.’ at the end tells plot to plot points instead of connecting lines, which
does not make much sense here.

Use the function concatenate from numpy to construct a dataset where the
points come from two different normal distributions. You can now use the MLP
to classify if a point comes from the first or the second distribution.

For training you must also supply a target array. This should be an array
with one column and the same number of rows as your data array. It should
contain the values zero or one depending on which normal distribution the
point comes from. Use the functions zeros and ones and perform the same
concatenation here to create the appropriate target array.

4 Plotting the Decision Boundary

Plotting the decision boundary is a great way of visualizing the result of training.
The idea is to plot a curve in the input space (which is two dimensional here),
such that all points on one side of the curve is classified as one class, and all
points on the other side are classified as the other.

pylab has a function call contour that can be used to plot contour lines
of a function given as values on a grid. Decision boundaries are special cases
of contour lines; by drawing a contour at the level where the classifier has its
threshold we will get the decision boundary.

What we will have to do is to call mlpfwd at a large number of points to see
what the network would produce at those points. We then draw a contour line
at level 0.5 (halfway between the targets 0 and 1 we used during training).
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Some matrix wizardry is required to generate a grid of equidistally placed
points suitable for contour. Here is an example how this can be done. Feel free
to copy this more or less literally into your program:

1 xrange = numpy . arange (−4 , 4 , 0 . 1 )
2 yrange = numpy . arange (−4 , 4 , 0 . 1 )
3 xgrid , ygr id = numpy . meshgrid ( xrange , yrange )
4
5 noOfPoints = xgr id . shape [ 0 ] ∗ xgr id . shape [ 1 ]
6 xcoords = xgr id . reshape ( ( noOfPoints , 1 ) )
7 ycoords = ygr id . reshape ( ( noOfPoints , 1 ) )
8 samples = numpy . concatenate ( ( xcoords , ycoords ) , a x i s =1)
9

10 ones = −numpy . ones ( xcoords . shape )
11 samples = numpy . concatenate ( ( samples , ones ) , a x i s =1)
12
13 i n d i c a t o r = p . mlpfwd ( samples )
14 i n d i c a t o r = i n d i c a t o r . reshape ( xgr id . shape )
15
16 pylab . contour ( xrange , yrange , i nd i c a to r , ( 0 . 5 , ) )
17 pylab . show ( )

Lines 1–2 set up arrays for the sample points in the x and y directions. Line
3 uses meshgrid to create two matrices, xgrid and ygrid which hold the x and
y coordinates, respectively, of all grid points.

Now, mlpfwd expects all points as rows in one matrix. This is what lines
5–8 are about; reshape is used to put all points in a single column, and then
the x column and y column are concatenated, side by side. Lines 10–11 append
a column where all elements are −1. This is the bias input (see section 2.2.2 in
the book).

In line 13 we call mlpfwd to run the forward pass on all our sample data
points. The variable p on line 13 refers to an instance of mlp which you must
first create and train on your data (by calling mlptrain; see the examples on
pages 56–57 in the text book).

After calling mlpfwd we use reshape again on line 14 to restore the grid of
the result. Finally (lines 16–17), we use contour to draw the contour line. Only
seeing the contour line not that interesting unless we also see the data points.
Use the code from before to plot the data points in the same diagram.
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5 Experiments

If you have got all the pieces of the code running, you should now be ready for
doing some experiments with the algorithm. There are a number of things you
can change:

• The location and number of data clusters in the two classes

• The deviation from the mean of each cluster

• The number of data points used for training

• The number of hidden units

• The step size and number of iterations for training

6 Running and Reporting

This assignment should be reported in a short (two pages are enough) lab report.
As a minimum you should include one simple example where you have two well
separated clusters, one for each class, and one more challenging classification
where a curved decision boundary is required.

For the highest grade you should also present at least one example where
overfitting occurs.
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