
Machine Learning CMPU 395

Assignment 1: Hodgkin-Huxley Modeling

1 Task

The task is to simulate the activity in an actively firing neuron using the
Hodgkin-Huxley equations. The necessary equations and suitable parameters
are listed below. Minimum requirement is that you produce a voltage trace
of the neuron membrane potential when it is firing spikes. For highest grade
you should also measure the output frequency for different input currents and
present this as a diagram.

2 Software Tools

For this assignment you will use Python extended with SciPy. Python is a
modern all-purpose programming language which has gained a lot of interst
in the science community. A large set of utility packages make it easy to use
Python for various tasks. Here, we are mainly interested in the packages for
solving differential equations and for plotting graphs. These are both part of a
set of packages known as Scientific Python (SciPy).

Sets of ordinary differential equations (ODEs) can be integrated (solved)
using a function called odeint. This function is part of a package called
scipy.integrate. Plotting can be done using the plot function from a package
called pylab.

3 Template code

Below is a sample program which illustrates how odeint and plot can be used.
This template code solves this set of differential equations:

du

dt
= v

dv

dt
= −u

Before you run the program, try to envision what these equations mean. The
first equation tells us that u will increase when v is positive and decrease when
v is negative. The second equation tells us that v will move in the opposite
direction compared to u due to the minus sign.

As you can see, it can be quite challenging to grasp what will happen by
just staring at the equations. With a computer it becomes easy to simulate
what will happen to the state variables (u and v in this case), as time proceeds.
The process of simulating a set of differential equations is also referred to as
integration.

The function odeint takes three arguments: a function specifying which
differential equations to integrate, a list of initial values (for u and v), and an
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array of time points when the state variables should be calculated. We use the
function arange from the numpy package to generate an array of 100 equidistally
placed time points.

The last two lines of the template program show how the result of the sim-
ulation can be plotted. The expression y[:,0] refers to a slice from the two-
dimensional array y. Colon here means “all rows” while 0 means only column
zero. This means that we are plotting u. Note that indices always start from
zero in Python.

import numpy # Numerical l i b r a r y
import pylab # P lo t t i n g rou t i n e s
from s c ipy . i n t e g r a t e import ode int # ODE in t e g r a t i o n

# In t e g r a t e t h i s system of d i f f e r e n t i a l e qua t i ons
# du/ dt = v
# dv/ dt = −u

# Our cho ice o f r e p r e s en t a t i on : array x conta ins [ u , v ]

def f (x , t ) :
# Compute r i g h t hand s i d e o f ODE system
return [ x [ 1 ] , −x [ 0 ] ]

# Time runs from 0 to 10 in 0.1 increments
t = numpy . arange ( 0 . 0 , 10 , 0 . 1 )

# Sta r t i n g from u=0.0 and v=1.0 , i n t e g r a t e over time
y = ode int ( f , [ 0 . 0 , 1 . 0 ] , t )

# y i s now a 2−diment iona l array ,
# column zero conta ins u va l u e s f o r a l l
# times in t , column one conta ins v

# Plo t the u va l u e s as a func t i on o f time
pylab . p l o t ( t , y [ : , 0 ] )
pylab . show ( )

Copy this program into a file odesolver.py and run it from the command
line by typing python odesolver.py. You should see a graphical window show-
ing how u evolves over time.

Note that you can save the diagram in a file by clicking on the rightmost
button below the graph. This will be handy when you want to include your
graphs in your lab reports.

Make a small change of the equation system. You can e.g. use these equa-
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tions instead:
du

dt
= v − 0.1u

dv

dt
= −u− 0.1v

Change the plotting to show v as a function of u. Save this plot and include it
in your lab report.

4 Equations

Now you should be ready to take on the challange of integrating the famous
Hodgin-Huxley equations. Here we have four state variables which interact: the
membrane voltage (V ), the sodium channel activation (m), the sodium channel
inactivation (h), and the potassium channel activation (n).

Your program will be easier to both write and read if you make use of
variables for the parameters involved, and helper functions for the equations
below which are not differential equations.

4.1 Membrane Voltage Equations

The voltage over the cell membrane v changes due to ions passing through
channels in the membrane. We will only take three such currents into account:
the sodium current (INa), the potassium current (IK), and an unspecific leak
current (IL).

C · dv
dt

= IL + INa + IK

IL = GL · (EL − v)

INa = m3hGNa · (ENa − v)

IK = n4GK · (EK − v)

The three state variables m, h, and n denote the activation, and inactivation
of sodium channels, and the activation of potassium channels, respectively.

Parameter Value Description
C 0.3 · 10−9 F Membrane capacitance
GL 0.03 · 10−6 Ω−1 Leak conductance
EL −0.070 V Leak equilibrium potential
GNa 10 · 10−6 Ω−1 Sodium conductance
ENa 0.050 V Sodium equilibrium potential
GK 2 · 10−6 Ω−1 Potassium conductance
EK −0.090 V Potassium equilibrium potassium
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4.2 Channel Activation Equations

dm

dt
= αm · (1 −m) − βm ·m

dh

dt
= αh · (1 − h) − βh · h

dn

dt
= αn · (1 − n) − βn · n

αm =
A(v −B)

1 − e−
v−B

C

βm =
−A(v −B)

1 − e
v−B

C

αh =
−A(v −B)

1 − e
v−B

C

βh =
A

1 + e−
v−B

C

αn =
A(v −B)

1 − e−
v−B

C

βn =
−A(v −B)

1 − e
v−B

C

Function A B C
αm 0.2 · 106 −0.040 0.001
βm 0.06 · 106 −0.049 0.020
αh 0.08 · 106 −0.040 0.001
βh 0.4 · 103 −0.036 0.002
αn 0.02 · 106 −0.031 0.0008
βn 0.005 · 106 −0.028 0.0004

5 Running and Reporting

Assemble a program which simulates a neuron with the given equations and
parameters. In order to activate the neuron to see some interesting behavior
you need to “inject” a small electrical current into the cell. Do this by adding
yet another current, IStim with a constant value. Note that all parameters are
in SI units, so currents will be in Amperes (!). If you inject 1 A into a neuron
it will probably evaporate before you even see it. Around 1 nA may be more
appropriate.

This assignment should be reported in a short (two pages are enough) lab
report. Include one diagram from your modified u, v equations, and one diagram
showing the membrane voltage of your neuron when you inject current.

For the highest grade you should also include a diagram showing how the
firing frequency of the neuron changes for different injected currents.
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